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a b s t r a c t

Specific formulae are derived for quadrature-based estimators of global sensitivity indices
when the unknown function can be modeled by a regression plus stationary Gaussian
process using the Gaussian, Bohman, or cubic correlation functions. Estimation formulae
are derived for the computation of process-based Bayesian and empirical Bayesian
estimates of global sensitivity indices when the observed data are the function values
corrupted by noise. It is shown how to restrict the parameter space for the compactly
supported Bohman and cubic correlation functions so that (at least) a given proportion of
the training data correlation entries are zero. This feature is important in the situation
where the set of training data is large. The estimation methods are illustrated and
compared via examples.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

A computer experiment uses a computer simulator based on a mathematical model of a physical process as an
experimental tool to determine “responses” or “outputs” at a set of user-specified input sites. These input sites constitute
the design for the computer experiment. Sophisticated computer codes may take hours or even days to produce an output
and, therefore, a flexible and rapidly computable predictor, sometimes called a code emulator or metamodel, is often fitted to
the inputs/outputs of the design, which are then called training data. An emulator allows the detailed, albeit approximate,
exploration of the output over the entire experimental region (see, for example, Sacks et al., 1989b; Santner et al., 2003).
A sensitivity analysis, based on the outputs of either the simulator or emulator, enables the researcher to assess the variation
in the output due to changes in individual inputs or groups of inputs (see, for example Saltelli et al., 2000; Helton et al.,
2006; Oakley and O’Hagan, 2004).

In this paper, we assume that the computer simulator has d continuous input variables denoted by the vector
x¼ ðx1;…; xdÞ and that the (one-dimensional) output of the simulator, denoted by yðxÞ ¼ yðx1;…; xdÞ, can be determined for x
in the hyper-rectangle X ¼∏d

j ¼ 1½lj;uj�, but is computationally expensive. The sensitivity of yðxÞ to the input values x can be
measured locally or globally. A local sensitivity index is based on the change in yð⋅Þ at a specified x0 ¼ ðx01;…; x0dÞ as the jth

input varies by a small amount parallel to the xj-axis and this can be measured by the partial derivatives of yð⋅Þ with respect
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to xj. In contrast, a first (or higher) order global sensitivity indexmeasures the change in yð⋅Þ as one (or more) inputs vary over
their entire range, when the remaining inputs are fixed (see, for example Saltelli, 2002). Homma and Saltelli (1996) further
defined the jth total sensitivity index as a measure of the change in yð�Þ due to the jth input, both through its main effect and
its joint effect with other inputs. Chen et al. (2005, 2006) defined subset sensitivity indices based on non-overlapping
partitions of the inputs. One popular definition of global sensitivity indices is in terms of the variability of the (weighted)
average output yðxÞ over x∈X ¼∏d

j ¼ 1½lj;uj�, as reviewed in Section 2.
As well as providing an understanding of the input/output relationship, sensitivity analysis provides a tool for

“screening”, that is for selecting the inputs that have major impacts on an input–output system, thereby allowing
researchers to restrict attention to these important inputs while setting the others to nominal values in their computational
simulator. For various discussions and applications of sensitivity analysis and screening, see for example, Welch et al. (1992),
Linkletter et al. (2006), Moon et al. (2012), and the references cited therein.

For estimating local sensitivity indices, Morris (1991) proposed the use of “elementary effects” calculated directly from
the simulator output, with inputs selected according to a “one-at-time” sampling design. This methodology was extended
by Campolongo et al. (2007). Sampling designs for estimating global sensitivity indices were presented and discussed by, for
example, Saltelli (2002), Morris et al. (2008), Da Viega et al. (2009), and Saltelli et al. (2010). In the case when the simulator
is expensive to run, such estimation methods may require more simulator runs than is feasible in order to produce accurate
global sensitivity index estimates. Chen et al. (2005), Oakley and O’Hagan (2004), Marrel et al. (2009), and Storlie et al.
(2013) gave alternative estimation methods based on analytical and probabilistic methods using emulators.

In this paper, we use the popular yðxÞ emulator based on a Gaussian process model as proposed, for example, by Sacks
et al. (1989b), and which has the form

YðxÞ ¼ f ⊤ðxÞβþ ZðxÞ; ð1:1Þ

where f ⊤ðxÞβ is a linear function of an unknown regression parameter vector β, and ZðxÞ is a zero-mean Gaussian process
having variance s2. Assuming this type of model, Sacks et al. (1989a, 1989b) and Welch et al. (1992) used a yðxÞ predictor
derived from the classical theory of best linear unbiased prediction. Other authors, including Currin et al. (1991), O'Hagan
(1992), Oakley and O’Hagan (2004), have viewed the random function YðxÞ as representing prior uncertainty about the true
function and adopted a Bayesian approach to estimation.

The purpose of this paper is to give specific formulae for global sensitivity index estimates for a broad class of regression
plus Gaussian process models (1.1) with independent inputs in the special case of stationary ZðxÞ with compactly supported
Bohman and cubic (separable) correlation functions. As compared with the often-used Gaussian correlation function, use of
compactly supported correlation functions together with a suitably rich mean structure has the potential to provide sparse
correlation matrices, thus allowing prediction to be performed with larger data sets within the Gaussian process framework
(see Kaufman et al., 2011).

In Section 3, we give formulae for quadrature-based methods of estimation using Gaussian processes with polynomial
mean and either Gaussian or Bohman correlation functions. In the on-line Supplementary Material, we provide the
corresponding formulae for the cubic correlation function. In Section 4, together with the Supplementary Material, we
derive the specific formulae required to compute both fully Bayesian and empirical (plug-in) Bayesian estimates of
sensitivity indices. The formulae in these two sections extend the work of Chen et al. (2005), Oakley and O’Hagan (2004),
Marrel et al. (2009), and others, who provide explicit formulae for global sensitivity estimators for Gaussian process
emulators with constant mean and Gaussian correlation function.

In Section 6, it is shown via two examples that sensitivity indices estimated using output from a Gaussian process
emulator under the compactly supported Bohman, and cubic correlation functions are similar to the estimates obtained
using the Gaussian correlation function, but that the computational times are much shorter. Although the current examples
are not extremely large, they illustrate the potential computational savings, described by Kaufman et al. (2011), that can be
achieved when handling large data sets and/or large numbers of inputs. In line with previous studies, our examples also
illustrate that calculation of sensitivity indices using a moment-based estimation method (based on “permuted column
sampling” as described by Morris et al., 2008) is less accurate when using only a moderate number of simulator runs. Finally,
Section 7 shows how to restrict the parameter space for the Bohman and cubic correlation functions so that (at least) a given
proportion of the training data correlation entries are zero.

2. Calculation of main effect and total effect sensitivity indices

In this section, we review definitions of main effect and total effect global sensitivity indices, as described by Homma and
Saltelli (1996), Saltelli (2002), Chen et al. (2005, 2006), for example. Throughout the paper, Q ¼ fk1;…; ksg⊂f1;2;…; dg
denotes a non-empty subset of the input variables and xQ denotes the vector of inputs ðxk1 ;…; xks Þ where, for definiteness, it
is assumed 1≤k1ok2o⋯oks≤d. The vector of the remaining inputs will be denoted by x−Q also arranged in
lexicographical order of their input index. By rearranging the order of the entire set of input variables we write the input
vector x as x¼ ðxQ ; x−Q Þ in a slight abuse of notation.

Throughout the paper, we take ½lj;uj� ¼ ½0;1�, for all inputs xj, j¼ 1;…; d, so that X ¼ ½0;1�d. The formulae can be extended
to the more general hyper-rectangle case. Also for simplicity of notation, it is assumed that the weight function can be
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