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a b s t r a c t

Statistical calibration using linear regression is a useful statistical tool having many appli-
cations. Calibration for infinitely many future y-values requires the construction of simul-
taneous tolerance intervals (STI’s). As calibration often involves only two variables x and y
and polynomial regression is probably themost frequently usedmodel for relating ywith x,
construction of STI’s for polynomial regression plays a key role in statistical calibration for
infinitely many future y-values. The only exact STI’s published in the statistical literature
are provided by Mee et al. (1991) and Odeh and Mee (1990). But they are for a multiple
linear regression model, in which the covariates are assumed to have no functional rela-
tionships. When applied to polynomial regression, the resultant STI’s are conservative. In
this paper, one-sided exact STI’s have been constructed for a polynomial regression model
over any given interval. The available computer program allows the exact methods devel-
oped in this paper to be implemented easily. Real examples are given for illustration.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Statistical calibration using linear regression has a rich history going back to Eisenhart (1939). The problem involves a
quantity of interest xwhich is expensive or difficult to measure, a surrogate quantity ywhich is cheaper or easy to measure,
and the assumption that y and x are related by a linear regression model. For example, x is the true concentration of radon,
222Rn, while y is the concentration reading on an alpha track detector (ATD), at a place, or x is the true alcohol level in
blood stream while y is the reading on a breathalyzer, of a driver. In order to use an observed y to infer the corresponding
but unobserved x, a calibration experiment is carried out to measure y0i corresponding to a known x0i for i = 1, . . . , n.
A regression model of y on x is then fitted by using the training data E = {(x0i, y0i), i = 1, . . . , n} and used to infer the
x-values corresponding to infinitely many y-values to be observed in future. The inference for the x-value corresponding to
one single future y-value is considered by Eisenhart (1939), Brown (1982) and Smith and Corbett (1987) among others, and
the relevant literature is reviewed in Osborne (1991) and Brown (1993).

This paper focuses on inference for infinitely many future y-values. Specifically, a confidence set C(yx) for the unknown
x corresponding to each observed future yx is constructed and the infinite sequence of confidence sets C(yx) corresponding
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to an infinite sequence of observed future yx-values has the property:with confidence level γ , with respect to the randomness
in the training data E , that the proportion of confidence sets C(yx) containing the corresponding true x-values is at least β , where
0 < γ , β < 1 are pre-specified constants. This property can be expressed as

PE


lim inf
N→∞

1
N

N
i=1

I{xi∈C(yxi )}
≥ β


≥ γ (1)

where IA denotes the indicator function of the set A and hence 1
N

N
i=1 I{xi∈C(yxi )}

is the proportion of the N confidence sets
that contain the true x-values. It is argued by Lieberman et al. (1967), Scheffé (1973), Aitchison (1982), Mee et al. (1991), Mee
and Eberhardt (1996), Mathew and Zha (1997), Mathew et al. (1998) and Krishnamoorthy and Mathew (2009, Chapter 3)
among others that this property is highly desirable inmany applications, and overwhelmingmajority publications on infinite
many calibrations aim to guarantee this property. Other properties that may have useful applications are discussed in Mee
and Eberhardt (1996).

One standard way to construct the confidence sets C(yx) having this property is to use the (β, γ )-simultaneous tolerance
intervals (STI’s). Assume a priori that the unknown x-values corresponding to all the future yx’s are in a given interval [a, b].
For example, the true blood alcohol level of any driver cannot be lower than a = 0 or higher than some upper threshold b.
The (β, γ )-STI’s [L(x; E), U(x; E)] over the interval x ∈ [a, b] satisfy

PE


Pyx { L(x; E) < yx < U(x; E)|E, x } ≥ β for all x ∈ [a, b]


≥ γ (2)

where yx denotes a future y-value corresponding to x and is independent of the training data E , the probability Pyx is with
respect to yx and conditional on E , and the probability PE is with respect to E . Then for each future yx the confidence set
C(yx) for the corresponding x is defined as

C(yx) = { x ∈ [a, b] : L(x; E) ≤ yx ≤ U(x; E) } . (3)

It is shown in Scheffé (1973, Appendix B) that these confidence sets C(yx) have the property in (1).
Numerical results inMee and Eberhardt (1996) and Lee (1999) lead to the conjecture that the property in (1) is guaranteed

by using the pointwise tolerance intervals (PTI’s) instead of the STI’s in (3). We have constructed counter examples to show
that the property in (1) does not hold in general if the STI’s are replaced by the PTI’s in the construction of C(yx) in (3).
The counter examples are not given here to save space but available from the authors. Hence the STI’s are central to the
construction of C(yx)’s in order to guarantee the property in (1).

Construction of (β, γ )-STI’s is considered first by Lieberman andMiller (1963) for simultaneous predictions, and there are
three construction methods available in the literature. The first is the construction of central (β, γ )-STI’s by Lieberman and
Miller (1963), Lieberman et al. (1967) and Scheffé (1973). Note that the central (β, γ )-STI’s are two-sided and even the exact
central (β, γ )-STI’s are conservative as (β, γ )-STI’s. The aforementioned papers only provide conservative central (β, γ )-
STI’s. The second is the probability setmethodbyWilson (1967) and Limam and Thomas (1988). Similar to the confidence set
constructionmethod of Rao (1973, p. 473), thismethod hinges on a γ level confidence set for the unknownparameters of the
regression model and the resultant (β, γ )-STI’s are also conservative and two-sided. The third is an exact method by Mee
et al. (1991) for two-sided (β, γ )-STI’s and Odeh andMee (1990) for one-sided (β, γ )-STI’s. Since the first twomethods are
conservative while Mee et al.’s (1991) method is exact, the two-sided (β, γ )-STI’s of Mee et al. (1991) are usually narrower
and so better than the conservative (β, γ )-STI’s, as demonstrated numerically in Mee et al. (1991, Section 3).

In this paper, we focus on polynomial regression. A calibration problem often involves only two quantities y and x (or
their suitable transformations), and a polynomial regressionmodel is a simple yet probably themost frequently usedmodel
to relate two quantities. Exact one-sided (β, γ )-STI’s will be constructed for a polynomial model of any order p−1 over any
given covariate interval x ∈ [a, b]. While the constructionmethod of this paper is also applicable to other regressionmodels,
such as the fractional polynomials (cf. Royston and Altman, 1994), the key step of maximizing K(x) in the expression (9)
below may require a different optimization method depending on the specific form of the regression model considered.

The upper (β, γ )-STI’s have L(x; E) = −∞ in (2), and the lower (β, γ )-STI’s have U(x; E) = ∞ in (2). The confidence
set C(yx) corresponding to the upper STI’s often takes the form of a lower confidence limit, which is most relevant for the
example of blood alcohol level since the police want to catch those drivers whose blood alcohol levels are above the legal
limit by using the lower confidence limits (cf. Krishnamoorthy et al., 2001). The confidence set C(yx) corresponding to the
lower STI’s often takes the form of an upper confidence limit, which is most relevant for the example of ATD since the
company wants to monitor that the radon concentrations are not above the safety threshold set by government agency by
using the upper confidence limits.

Note that the exact (β, γ )-STI’s of Mee et al. (1991) and Odeh andMee (1990) are for a multiple linear regression model,
in which the covariates are assumed to have no functional relationships, over a special covariate region only. These STI’s
become conservative when applied to a polynomial regression model of order two (i.e. quadratic regression) or above. Even
for the simple linear regression (i.e. polynomial regression of order one), these STI’s are only over a covariate set that is
symmetric about x̄, the mean of the observed covariate values in E . See Section 2.2 for more details.

The layout of this paper is as follows. Section 2dealswith the construction of exact one-sided (β, γ )-STI’s for a polynomial
regression model over a given covariate interval. It also shows why the exact one-sided (β, γ )-STI’s for a multiple linear
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