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In this paper it is shown that data depth does not only provide consistent and robust

estimators but also consistent and robust tests. Thereby, consistency of a test means

that the Type I (a) error and the Type II (b) error converge to zero with growing sample

size in the interior of the nullhypothesis and the alternative, respectively. Robustness is

measured by the breakdown point which depends here on a so-called concentration

parameter. The consistency and robustness properties are shown for cases where the

parameter of maximum depth is a biased estimator and has to be corrected. This bias

is a disadvantage for estimation but an advantage for testing. It causes that the

corresponding simplicial depth is not a degenerated U-statistic so that tests can be

derived easily. However, the straightforward tests have a very poor power although

they are asymptotic a-level tests. To improve the power, a new method is presented to

modify these tests so that even consistency of the modified tests is achieved. Examples

of two-dimensional copulas and the Weibull distribution show the applicability of the

new method.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Most approaches in robustness against outliers and contamination concern estimation. The absolute minority deals
with robust testing, see e.g. the books on robust statistics of Jurecková and Sen (1996), Müller (1997), Maronna et al.
(2006), Huber and Ronchetti (2009), and Heritier et al. (2009). Robust tests are typically asymptotic a level tests, since it is
impossible to derive the finite sample distribution. Moreover, the behavior under the alternative is unknown. Even
consistency is usually not proved for these robust tests, although this is an important property of a test. Thereby a test
jN : ZN-f0;1g for H0 : y 2 Y0 against H1 : y 2 Y\Y0 is called consistent, if

lim
N-1

PyðjN ¼ 1Þ ¼ 0 for all y 2 intðY0Þ,

lim
N-1

PyðjN ¼ 1Þ ¼ 1 for all y 2 intðY\Y0Þ,

where int(A) denotes the interior of a set A. Hence consistency of a test concerns the Type I as well as the Type II error. In
this paper, we prove the consistency of some robust tests based on data depth. Since consistency and robustness of a test
are strongly related to consistency and robustness of corresponding estimators, we also treat both for estimators based on
data depth.
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The concept of data depth is an approach to generalize the median and ranks to multivariate data and more
complex situations. Notions of data depth were for example developed for multivariate data by Tukey (1975), Liu (1990)
and Mosler (2002). Meanwhile data depth is a wide spread method with many applications, see e.g. Lin and Chen (2006),
Li and Liu (2008), Romanazzi (2009), López-Pintado and Romo (2009), López-Pintado et al. (2010), Hu et al. (2011) for
some recent applications. Zuo and Serfling (2000a,b) provided some general properties of depth notions. An important step
for more generalizations was the development of the concept of the nonfit. Depth notions defined via the nonfit were at
first developed by Rousseeuw and Hubert (1999) for regression. Mizera (2002) extended this approach by using general
quality functions for the nonfit and by distinguishing between global and tangent depth. Quality functions can be obtained
in particular by likelihood functions. This leads to the concept of likelihood depth which can be applied to general
situations. For example, it was applied to location and scale depth in Mizera and Müller (2004). Estimators maximizing the
likelihood depth are robust alternatives to the nonrobust maximum likelihood estimators (MLE). The estimators based on
likelihood depth are comparable concerning flexibility and applicability to the MLE. The latter is depending very much on
the underlying distribution, small changes in the distribution can lead to extreme adulterations in the estimator. This is
not the case for the estimators maximizing the likelihood depth. In particular, in simulation studies these estimators
showed high robustness against contaminations with other distributions, but the robustness was not proved formally yet.
See e.g. Wellmann et al. (2007) and Denecke and Müller (2011).

Any depth notion can be used to define simplicial depth as Liu (1990) did using the halfspace depth of Tukey (1975).
Every simplicial depth is an U-statistic so that its asymptotic distribution is in principle known and asymptotic a-level
tests can be derived, see Müller (2005). In particular, general hypotheses of the form H0 : y 2 Y0 can be tested by using the
maximum simplicial depth over the set Y0. However, many simplicial depth notions are degenerated U-statistics so that
the spectral decomposition of a conditional expectation is needed to derive the asymptotic distribution which in this case
is not a normal distribution. Such spectral decompositions were for example derived for polynomial regression, multiple
regression, and orthogonal regression by Wellmann et al. (2009) and Wellmann and Müller (2010a,b), respectively. There
are also cases where the simplicial depth is not a degenerated U-statistic, for example the simplicial depth based on
likelihood depth for copulas, as Denecke and Müller (2011) showed. Nondegenerated U-statistics have the normal
distribution as asymptotic distribution so that asymptotic a-level tests can be derived easily. However, the price for a
nondegenerated simplicial is a bias of the estimator maximizing the underlying depth notion. This bias caused also a very
bad asymptotic power of the tests for some alternatives in simulation studies (see Denecke and Müller, 2011).

In this paper, we provide a robustness proof and an explanation for the empirically observed bad power at some
alternatives. In particular, we prove that the straightforward tests are not consistent but that they can be corrected so that
they are consistent. Further, we show that the correction is different from the correction which is needed to obtain the
consistency of the corresponding maximum depth estimators. But they are related as well as the robustness properties.
Therefore we also treat the consistency and robustness of estimators based on maximum depth. The robustness is derived
via the breakdown point. Since we also allow bounded parameter space, it is shown that the breakdown point depends on
a so-called concentration parameter which counts the number of observations in special subsets of the observation space.
These subsets can be empty sets, single points, linear subspaces or larger subsets.

The consistency and robustness of estimators and tests are shown for depth based on general quality functions and
one-dimensional parameters. We think that this approach also can be used for multidimensional parameters, but this
needs much more technical effort. In particular, it is more difficult to derive examples. Therefore we only sketch the
possible extension for multidimensional parameters. The examples considered here are derived via likelihood depth. These
examples concern univariate data coming from a Weibull distribution with known shape or known scale and bivariate
data given by the Gumbel or Gaussian copula. The concentration parameter of these examples are based on subsets which
are a empty set (scale parameter of the Weibull distribution), a single point (shape parameter of the Weibull distribution),
linear subspaces (Gaussian copula) and also a larger subset (Gumbel copula).

The paper is organized as follows. Section 2 concerns the consistency and the breakdown point of estimators based on
data depth. It presents the new characterization of the breakdown point via the concentration parameter. This result
together with the consistency of the estimators provides the notations and foundations which are needed to derive the
consistency and robustness of the tests in Section 3. In particular, the results for the examples are needed to derive later
consistent and robust tests for these examples. The completely new approach for testing is presented in Section 3. It
provides consistency and robustness of tests based on depth for hypotheses given by H0 : yry0, H0 : yZy0, and
H0 : y¼ y0. Thereby, also the inconsistency of the straightforward tests is proved. Each section ends by treating the
examples of Weibull distribution and the copulas. Before the examples are given, a sketch of the possible extension for
multidimensional parameters is given in each of Sections 2 and 3. All proofs can be found in the Appendix.

2. Estimators based on depth

2.1. Depth and maximum depth estimators

Let Z1, . . . ,ZN be i.i.d. random variables with values in Z � Rp and with continuous distribution Py and density
f y,y 2 Y � Rq. As in Mizera (2002) let Q : Y� Z-R denote a quality function that measures for every data zn, n¼ 1, . . . ,N,

L. Denecke, C.H. Müller / Journal of Statistical Planning and Inference 142 (2012) 2501–25172502



Download English Version:

https://daneshyari.com/en/article/1148681

Download Persian Version:

https://daneshyari.com/article/1148681

Daneshyari.com

https://daneshyari.com/en/article/1148681
https://daneshyari.com/article/1148681
https://daneshyari.com

