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a b s t r a c t

Motivated by a biomarker study for colorectal neoplasia, we consider generalized

functional linear models where the functional predictors are measured with errors at

discrete design points. Assuming that the true functional predictor and the slope

function are smooth, we investigate a two-step estimating procedure where both the

true functional predictor and the slope function are estimated through spline smooth-

ing. The operating characteristics of the proposed method are derived; the usefulness of

the proposed method is illustrated by a simulation study as well as data analysis for the

motivating colorectal neoplasia study.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In biomedical studies, predictors are often measured from the same subjects repeatedly over time or a certain spatial
structure and are therefore of functional nature. In particular, our work here is motivated by a colorectal neoplasia study,
where the goal is to associate a subject’s disease status with gene biomarkers whose expression levels in terms of protein
contents are measured along the length of colon crypts, a microscopic structure in the human colon mucosa (Daniel et al.,
2009). As Fig. 1 in Daniel et al. (2009) shows, the distribution of gene expression levels can be measured from the base to
the apex of a semi-crypt, which forms a natural one dimensional spatial structure.

Studies like this can be naturally modeled using the generalized functional linear regression (GFLM, for short), where
the dependence of a scalar outcome of interest, y, on a functional predictor, xð�Þ is characterized by a conditional density
from the exponential family:

f ðy9xÞ ¼ exp f½yZðxÞ�bðZðxÞÞ�=aðfÞþcðy,fÞg, ð1Þ

where

ZðxÞ ¼ a0þ

Z
T

xðtÞb0ðtÞ dt ð2Þ

is the natural parameter, f is a nuisance parameter, and að�Þ, bð�Þ and cð�Þ are specific smooth functions. In parallel to the
classical generalized linear models (McCullagh and Nelder, 1989), a0 and b0ð�Þ are referred to as the intercept and slope
function, respectively, in GFLM. The goal is to estimate the intercept and slope function from n iid copies of the pair:
ðxið�Þ,yiÞ, i¼1, y, n. Oftentimes, the task is further complicated by the lack of direct observations of xið�Þ. Rather, one only
has access to noisy observations of xið�Þ at discrete design points:

zij ¼ xiðtijÞþEij, j¼ 1, . . . ,mi, ð3Þ

where the measurement error Eij is independent of the random function xið�Þ.
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Due to its wide applications, models with functional predictors have drawn much attention in recent years including
functional linear models (FLM, for short) (Cardot et al., 2003, 2007; Li and Hsing, 2006; Yao et al., 2005; Crambes et al.,
2009; Yuan and Cai, 2010) and GFLM (Cardot and Sarda, 2005; Muller and Stadtmüller, 2005). Most of existing approaches
(Cardot et al., 2003; Cardot and Sarda, 2005; Muller and Stadtmüller, 2005; Yuan and Cai, 2010) assume that direct
observations of xð�Þ are available, i.e., xð�Þ is fully observed without errors. This restriction is lifted only in several recent
studies of the standard FLM (Cardot et al., 2007; Li and Hsing, 2006; Yao et al., 2005; Crambes et al., 2009) where xð�Þ is not
fully observed and is measured with errors, and these models can be viewed as a special case of Model (1); most of these
current work (Yao et al., 2005; Crambes et al., 2009) exploits the fact that there is a closed-form solution for estimating
b0ðtÞ in FLM when xð�Þ is fully observed without errors. Since such closed-form solution is not available for GFLM when xð�Þ

is fully observed without errors, it is not trivial to extend these results developed for FLM to the more general GFLM and it
is also unclear to what extent the existing results for FLM apply to GFLM.

To address our problem of interest, we adopt an approach similar to Li and Hsing (2006); specifically, we investigate a
two-step estimating procedure, where both the functional predictor xið�Þ and the slope function b0ð�Þ are estimated through
spline smoothing. We provide the details of the estimating procedure in Section 2 and study its operating characteristics in
Section 3. In Section 4, we conduct a small simulation study to evaluate the finite sample performance, and illustrate the
proposed approach using a colorectal cancer study. Finally, we make some conclusion remarks in Section 5. An outline of
the proofs for the main theoretical results is given in Appendix.

2. Estimation

To fix idea, we assume that the true slope function b0ð�Þ belongs to the qth order periodic Sobolev space:

Wq
per,2 ¼ ff : f ,f ð1Þ, . . . ,f ðq�1Þ absolutely continuous

and gðkÞð0Þ ¼ gðkÞð1Þ for 0rkrq�1, f ðqÞ 2 L2½0;1�g:

Furthermore, we shall assume that the functional predictor xð�Þ belongs to the same functional space almost surely with
EðJx½q�J2

Þo1. Throughout, we denote by J � J the usual L2 norm, and by / � , �S the usual L2 inner product. We note that the
qth order Sobolev space:

Wq
2 ¼ ff : f ,f ð1Þ, . . . ,f ðq�1Þ absolutely continuous, f ðqÞ 2 L2½0;1�g

is the sum of two spaces, one is Wq
per,2 and the other is the space spanned by the first q�1 polynomial basis functions.

Hence, when x and b0 belong to Wq
2, our results also hold. Hence, this setting is suitable for most applications including the

aforementioned colorectal cancer study, and is commonly adopted in the previous studies of functional linear regression
(see, e.g., Li and Hsing, 2006).

To motivate our method, we consider first the situation where the functional predictor xi’s are available. It is evident
that in this case, the negative log-likelihood can be expressed as

Lða,bÞ ¼�
1

n

Xn

i ¼ 1

fyiZðxiÞ�bðZðxiÞÞg ð4Þ

up to terms not depending on a and b. The intercept and slope function can then be estimated through penalization:

ðâ,b̂Þ ¼ arg min Lða,bÞþ
l
2

JðbÞ
� �

, ð5Þ

where lZ0 is a tuning parameter, and J is a penalty functional. In particular, we consider the following popular choice of
the penalty functional:

JðbÞ ¼
Z 1

0
ðb½q�ðtÞÞ2 dt:

Proposition 1. Suppose that for Lða,bÞ is continuous and convex with respect to its second argument. Then â and b̂ are uniquely

defined if and only if varð
R
T xðtÞ dtÞ40.

Proposition 1 can be readily proved and it indicates that this procedure indeed leads to valid estimates when xið�Þ is
directly observed. In this case, the estimate of the slope function can be obtained by extending the method proposed in
Yuan and Cai (2010), and is not the focus of this article.

We now consider the case when xið�Þ is not observable and only zij’s as given in (3) are observed. To use the procedure
described above, we first construct an estimate of xið�Þ, say, xn

i ð�Þ. In particular, we propose to estimate xi by means of
penalized regression splines using the first 2Kþ1 Fourier basis functions:

xn

i ð�Þ ¼ arg min
1

mi

Xmi

j ¼ 1

zij�xðtijÞ
� �2

þ
li

2

Z 1

0
ðx½q�ðtÞÞ2 dt

0
@

1
A ð6Þ
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