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Abstract

Rényi divergences are used to propose some statistics for testing general hypotheses in mixed linear regression models. The
asymptotic distribution of these tests statistics, of the Kullback–Leibler and of the likelihood ratio statistics are provided, assuming
that the sample size and the number of levels of the random factors tend to infinity. A simulation study is carried out to analyze and
compare the behavior of the proposed tests when the sample size and number of levels are small.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction to mixed linear regression models

Random effects models, and more generally mixed linear models, have been studied over many years in the research
literature. Some books devoted to the study of these models are e.g. Rao and Kleffe (1988), Searle et al. (1992), Rao
(1997) and, more recently, Sahai and Ojeda (2004). Applications can be found in many fields, like Quantitative Genetic
Theory (Fisher, 1918), Agricultural Sciences (Yates and Zacopanay, 1935), Psychology ((Jackson, 1939), Marine
Biology (Winsor and Clarke, 1940), Animal Sciences (Henderson, 1969), and more recently Small Area Estimation
(Rao, 2003). However, so far the main interest has been put on estimation, while hypotheses testing has been paid less
attention. In this paper, we develop a family of test statistics which compete with other tests of general use, like the
likelihood ratio test.

We consider the general mixed linear model

y = X� + Z1u1 + · · · + Zsus + e, (1)

where y = (y1, . . . , yn)
t is the vector of observations of the response variable, � = (�1, . . . , �p)t is the vector of

(unknown) fixed effects and ui = (ui1, . . . , uiqi
)t is the vector of effects of the qi levels of the ith random factor,
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i = 1, . . . , s. Thus, in the sequel ui itself will be referred to as the ith random factor. Finally, e = (e1, . . . , en)
t is the

vector of random errors, and X, Z1, . . . , Zs are known design matrices, of orders n×p, n×q1, . . . , n×qs , respectively.
The following assumptions listed by Miller (1977) ensure the estimability of all model parameters:

(F1) u1, . . . , us , e are independent and normally distributed, more precisely e ∼ Nn(0, �2
0In) and ui ∼ Nqi

(0, �2
i Iqi

),
i = 1, . . . , s, where �2

i , i = 0, 1, . . . , s, are unknown parameters typically called variance components.
(F2) rank(X) = p. (It can always be satisfied by suitable reparametrization of the model.)

The number of observations must be at least the number of parameters, that is

(F3) n�p + s + 1.

Another necessary assumption is that fixed effects cannot be confounded with the effects of any random factor, i.e., if
[A : B] denotes the matrix built by placing B on the right of A,

(F4) rank[X : Zi] > p, i = 1, . . . , s.

Let us define Gi =ZiZ
t
i , i=1, . . . , s, and G0 =In. (F5) assures that the effects of any random factor are not confounded

with the effects of any other random factor.

(F5) G0, G1, . . . , Gs are linearly independent, that is,

s∑
i=0

�iGi = 0 implies �i = 0, i = 0, 1, . . . , s.

Finally, (F6) determines the shape of Zi, i = 1, . . . , s.

(F6) Zi contains only zeros and ones, in such a way that there exists exactly one 1 in each row, and at least one 1 in
each column, i = 1, . . . , s.

The previous assumption implies that Zt
iZi = Di , where Di is a diagonal nonsingular matrix of order qi × qi , that

rank(Zi) = qi , and that qi �n, i = 1, . . . , s.
From previous assumptions, we deduce that

y ∼ Nn(X�, V ), where V = V (�2) =
s∑

i=0

�2
i Gi and �2 = (�2

0, �
2
1, . . . , �

2
s )

t ,

and it is required that

(F7) V is regular.

Let �t = (�t, (�2)t) denote the vector of unknown parameters, so that the parametric space is

� = {�t = (�t, (�2)t); � ∈ Rp; �2
0 > 0; �2

i �0, i = 1, . . . , s}. (2)

For an observed y, the likelihood of � is denoted in the same way as the joint probability density function (p.d.f.) of y
given �, i.e.

f�(y) = (2�)−n/2|V |−1/2 exp{− 1
2 (y − X�)tV −1(y − X�)}, (3)

and its loglikelihood by l(�) = ln f�(y).
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