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Tests for assessment of agreement using probability criteria
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Abstract

For the assessment of agreement using probability criteria, we obtain an exact test, and for sample sizes exceeding 30, we give a
bootstrap-t test that is remarkably accurate. We show that for assessing agreement, the total deviation index approach of Lin [2000.
Total deviation index for measuring individual agreement with applications in laboratory performance and bioequivalence. Statist.
Med. 19, 255–270] is not consistent and may not preserve its asymptotic nominal level, and that the coverage probability approach
of Lin et al. [2002. Statistical methods in assessing agreement: models, issues and tools. J. Amer. Statist. Assoc. 97, 257–270] is
overly conservative for moderate sample sizes. We also show that the nearly unbiased test of Wang and Hwang [2001. A nearly
unbiased test for individual bioequivalence problems using probability criteria. J. Statist. Plann. Inference 99, 41–58] may be liberal
for large sample sizes, and suggest a minor modification that gives numerically equivalent approximation to the exact test for sample
sizes 30 or less. We present a simple and accurate sample size formula for planning studies on assessing agreement, and illustrate
our methodology with a real data set from the literature.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Suppose a paired sample of reference and test measurements, (X, Y ), are available on n randomly chosen subjects
from a population of interest. Generally the Y’s are cheaper, faster, easier or less invasive to obtain than the X’s. The
question of our concern is: “Are X and Y close enough so that they can be used interchangeably?” This comparison is the
goal of method comparison studies. We focus on a test of hypotheses approach for this problem that infers satisfactory
agreement between Y and X when the difference D = Y − X lies within an acceptable margin with a sufficiently high
probability. We will assume that D follows a N(�, �2) distribution. Let F(·) and �(·) denote the c.d.f.’s of |D| and a
N(0, 1) distribution, respectively.

There are two measures of agreement based on the probability criteria. The first is the p0th percentile of |D|,
say Q(p0), where p0 (> 0.5) is a specified large probability (usually �0.80). It was introduced by Lin (2000) who
called it the total deviation index (TDI). Its small value indicates a good agreement between (X, Y ). The TDI can be
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Fig. 1. The regions under the hypotheses (H, K) of our interest, given by (4) or (5), and those under (H∗, K∗) of Lin (2000), given by (7). The top
two curves represent the boundaries of the two null regions for p0 = 0.80, and the bottom two for p0 = 0.95. The alternative regions lie under the
respective curves. Here we have taken �0 = 1.0, so that the x- and the y-axes actually represent �/�0 and �/�0, respectively.

expressed as,

Q(p0) = F−1(p0) = �{�2
1(p0, �

2/�2)}1/2, (1)

where �2
1(p0, �) is the p0th percentile of a �2-distribution with single degree of freedom and non-centrality parameter

�.
The second measure, introduced by Lin et al. (2002), is the coverage probability (CP) of the interval [−�0, �0],

where a difference under ±�0 is considered practically equivalent to zero. There is no loss of generality in taking this
interval to be symmetric around zero as it can be achieved by a location shift. Letting,

dl = (−�0 − �)/�, du = (�0 − �)/�, (2)

the CP can be expressed as

F(�0) = �(du) − �(dl). (3)

A high value of F(�0) implies a good agreement between the methods.
For specified (p0, �0), F(�0)�p0 ⇐⇒ Q(p0)��0. Consequently, for assessing agreement one can test either the

hypotheses

H: Q(p0)��0 vs. K: Q(p0) < �0, (4)

or

H: F(�0)�p0 vs. K: F(�0) > p0, (5)

and infer satisfactory agreement if H is rejected.
Let �={(�, �) : |�| < ∞, 0 < � < ∞} be the parameter space. Also let �H and �K be the subsets of � representing

the regions under H and K, respectively, and �B be the boundary of H. These regions can be visualized through the
solid curves in Fig. 1 for p0 = 0.80, 0.95. Note that they are symmetric in � about zero.

Lin (2000) suggests a large sample test for the hypotheses (4) and we refer to it as the TDI test. Lin et al. (2002) suggest
a large sample test for (5), and we call it the CP test. They also conclude that these tests are more powerful for inferring
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