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a b s t r a c t

In this article, we propose rigorous sample size methods for estimating the means of
random variables, which require no information of the underlying distributions except
that the random variables are known to be bounded in a certain interval. Our sample size
methods can be applied without assuming that the samples are identical and independent.
Moreover, our sample size methods involve no approximation. We demonstrate that the
sample complexity can be significantly reduced by using amixed error criterion.We derive
explicit sample size formulae to ensure the statistical accuracy of estimation.
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1. Introduction

Many problems of engineering and sciences boil down to estimating themean value of a random variable (Mitzenmacher
and Upfal, 2005; Motwani and Raghavan, 1995). More formally, let X be a random variable with mean µ. It is a frequent
problem to estimate µ based on samples X1, X2, . . . , Xn of X , which are defined on a probability space (Ω,F , Pµ), where
the subscript in the probability measure Pµ indicates its association with µ. In many situations, the information on the
distribution of X is not available except that X is known to be bounded in some interval [a, b]. For example, in clinical
trials, many quantities under investigation are bounded random variables, such as biomarker, EGFR, K-Ras, B-Raf, Akt, etc.
(see., e.g., Arellano et al., 2012; Janik et al., 2010; Wang et al., 2012, and the references therein). Moreover, the samples
X1, X2, . . . , Xn may not be identical and independent (i.i.d). This gives rise to the significance of estimating µ under the
assumption that

a ≤ Xk ≤ b almost surely for k ∈ N, (1)
E[Xk | Fk−1] = µ almost surely for k ∈ N, (2)

where N denotes the set of positive integers, and {Fk, k = 0, 1, . . . ,∞} is a sequence of σ -subalgebras such that {∅,Ω} =

F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ F , with Fk being generated by X1, . . . , Xk. The motivation we propose to consider the esti-
mation of µ under dependency assumption (2) is twofold. First, from a theoretical point of view, we want the results to
hold under the most general conditions. Clearly, (2) is satisfied in the special case that X1, X2, . . . are i.i.d. Second, from a
practical standpoint, we want to weaken the independency assumption for more applications. For example, in the Monte
Carlo estimation technique based on adaptive importance sampling, the samples X1, X2, . . . are not necessarily indepen-
dent. However, as demonstrated in page 6 of Gajek et al. (2013), it may be shown that the samples satisfy (2). An example
of adaptive importance sampling is given in Section 5.8 of Fishman (1996) on the study of catastrophic failure.
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An unbiased estimator for µ can be taken as

Xn =

n
i=1

Xi

n
.

Let ε ∈ (0, 1) and δ ∈ (0, 1) be pre-specified margin of absolute error and confidence parameter, respectively. Since the
probability distributions of X1, X2, . . . are usually unknown, one would use an absolute error criterion and seek the sample
size, n, as small as possible such that for all values of µ,

Pµ

|Xn − µ| < ε


> 1 − δ (3)

holds for all distributions having common mean µ. It should be noted that it is difficult to specify a margin of absolute
error ε, without causing undue conservatism, for controlling the accuracy of estimation if the underlying mean value µ can
vary in a wide range. To achieve acceptable accuracy, it is necessary to choose small ε for small µ. However, this leads to
unnecessarily large sample sizes for large µ.

In addition to the absolute error criterion, a relative error criterion is frequently used for the purpose of error control. Let
η ∈ (0, 1) and δ ∈ (0, 1) be the pre-specified margin of relative error and confidence parameter, respectively. It is desirable
to determine the sample size, n, as small as possible such that for all values of µ,

Pµ
Xn − µ

 < η|µ|

> 1 − δ (4)

holds for all distributions having commonmeanµ. Unfortunately, the determination of sample size, n, requires a good lower
bound for µ, which is usually not available. Otherwise, the sample size n needs to be very large, or infinity.

To overcome the aforementioned difficulties, a mixed criterion may be useful. The reason is that, from a practical point
of view, an estimate can be acceptable if either an absolute criterion or a relative criterion is satisfied. More specifically, let
ε > 0, η ∈ (0, 1) and δ ∈ (0, 1). To control the reliability of estimation, it is crucial that the sample size n is as small as
possible, such that for all values of µ,

Pµ

|Xn − µ| < ε or |Xn − µ| < η|µ|


> 1 − δ (5)

holds for all distributions having common mean µ.
In the estimation of parameters, a margin of absolute error is usually chosen to be much smaller than the margin of

relative error. For instance, in the estimation of a binomial proportion, amargin of relative errorη = 0.1may be good enough
formost situations, while amargin of absolute errormay be expected to be ε = 0.001 or even smaller. Inmany applications,
a practitioner accepting a relative error normally expects a much smaller absolute error, i.e., ε ≪ η. On the other hand, one
accepting an absolute error ε typically tolerates a much larger relative error, i.e., η ≫ ε. It will be demonstrated that the
required sample size can be substantially reduced by using a mixed error criterion.

Given that the measure of precision is chosen, the next task is to determine appropriate sample sizes. A conventional
method is to determine the sample size by normal approximation derived from the central limit theorem (Chow et al.,
2008; Desu and Raghavarao, 1990). Such an approximation method inevitably leads to unknown statistical error due to the
fact that the sample size n must be a finite number (Fishman, 1996; Hampel, 1998). This motivates us to explore rigorous
methods for determining sample sizes.

In this paper, we consider the problem of estimating the means of bounded random variables based on a mixed error
criterion. The remainder of the paper is organized as follows. In Section 2, we introduce some martingale inequalities. In
Section 3, we derive explicit sample size formulae by virtue of concentration inequalities and martingale inequalities. In
Section 4, we extend the techniques to the problem of estimating the difference of means of two bounded random variables.
Illustrative examples are given in Section 5. Section 6 provides our concluding remarks.Most proofs are given in Appendices.

2. Martingale inequalities

Under assumption (2), it can be readily shown that {Xk−µ} is actually a sequence ofmartingale differences (see, e.g. Doob,
1953; Willams, 1991, and the references therein). In the sequel, we shall introduce some martingale inequalities which are
crucial for the determination of sample sizes to guarantee pre-specified statistical accuracy.

Define function

ψ(ε, µ) = (µ+ ε) ln

µ+ ε

µ


+ (1 − µ− ε) ln


1 − µ− ε

1 − µ


for 0 < ε < 1 − µ < 1. Under the assumption that 0 ≤ Xk ≤ 1 almost surely and (2) holds for all k ∈ N, Hoeffding (1963)
established that

Pµ{Xn ≥ µ+ ε} < exp (−nψ(ε, µ)) for 0 < ε < 1 − µ. (6)

To see that such result is due to Hoeffding, see Theorem 1 and the remarks on page 18, the second paragraph, of his paper
(Hoeffding, 1963). For bounds tighter than Hoeffding’s inequality, see a recent paper (Bentkus, 2004).
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