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a b s t r a c t

We consider sliced computer experiments where priori knowledge suggests that factors
mayhave different levels of importance, and so some factors need to be paidmore attention
than others. A new class of sliced space-filling designs are proposed to deal with this
type of sliced computer experiments, in which the whole design and each slice may
have different levels of two-dimensional uniformity for different factors, besides they all
achieve maximum stratification in univariate margins. They are generated by elaborately
randomizing a special type of asymmetric orthogonal arrays, called asymmetric balanced
sliced orthogonal arrays, which can be partitioned into several slices such that each slice is
balanced and becomes an asymmetric orthogonal array after some level-collapsing. Several
methods are developed to construct such asymmetric balanced sliced orthogonal arrays.
Simulation study shows that the proposed designs perform well compared with other
sliced designs for computer experiments.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Sliced space-filling designs, proposed by Qian and Wu (2009), are intended for computer experiments with both
qualitative and quantitative factors (Qian et al., 2008; Han et al., 2009), linking parameters in engineering and cross-
validation. For those sliced designs constructed by Qian and Wu (2009) and Qian (2012), each slice cannot achieve the
univariate andmultiple-dimensional uniformity simultaneously. Recently, Xu et al. (2011) constructed Sudoku-based sliced
space-filling designs in which the whole design and each slice all achieve maximum stratification in both univariate and
bivariate margins. Ai et al. (2014) proposed a general approach to construct sliced space-filling designs by randomizing
symmetric balanced sliced orthogonal arrays (BSOAs) so that the whole design and each slice can achieve stratification in
two- or more-dimensional projections, in addition to achieving maximum stratification in univariate margins.

In this article, we consider sliced computer experiments where priori knowledge suggests that some factors are more
important than others, and so need to be paid more attention. For example, in studying the heat transfer rate in a heat
exchanger, the temperature of the heat source and the thermal conductivity of the material would have more influence
than others. In predicting the speed of wind in an area, the local temperature and terrain may give more significant effects.
Besides, interactions often arise among a group of particular factors and thus these factors deserve more attention. To deal
with this issue, we are ready to propose a new class of sliced space-filling designs, in which the whole design and each
slice can achieve maximum stratification in any univariate margin, but have different levels of two-dimensional uniformity
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for different factors. The proposed designs are generated by randomizing asymmetric BSOAs, which are a special class of
asymmetric orthogonal arrays whose rows can be partitioned into several slices such that each slice is balanced and also
becomes an asymmetric orthogonal array after some level-collapsing. Thus, the more important factors can be assigned to
the columns with higher level in an asymmetric BSOA.

Compared with symmetric BSOAs of the same runs, asymmetric BSOAs can accommodate more columns with lower
levels. Consequentially, the sliced space-filling designs based on asymmetric BSOAs can accommodate more factors of less
importance, and hence such designs can save experimental runs if the degradation of two-dimensional uniformity for
the less important factors is admissible. Furthermore, all the quantitative factors can still achieve maximum uniformity
in univariate margins. So the proposed designs are expected to have high efficiency to design such sliced computer
experiments.

The remainder of this article will unfold as follows. A formal definition of asymmetric BSOAs is given in Section 2. Sec-
tions 3 and 4 provide the construction of asymmetric BSOAs via the Kronecker sum and the replacement of levels, respec-
tively. The generation of sliced space-filling designs based on asymmetric BSOAs is presented in Section 5. Some comparisons
are given in Section 6 to show the performance of such designs. Section 7 concludes this article with some discussions.

2. Definition of asymmetric BSOAs

An orthogonal array (OA), denoted by OA(n, sγ11 · · · sγkk , t), with n runs, m =
k

i=1 γi factors and strength t(m ≥ t ≥ 1),
is an n × mmatrix in which the first γ1 columns have s1 levels from a set of s1 elements, the next γ2 columns have s2 levels
from a set of s2 elements, and so on, such that every n × t submatrix contains all possible level combinations as rows with
the same frequency. When s1 = · · · = sk = s, in particular, this special case is called a symmetric OA and denoted by
OA(n, sm, t); otherwise, it is an asymmetric OA. An array is called balanced if it is an OA of strength one. Throughout, we
consider only OAs of strength two and drop the strength parameter in OA(n, sγ11 · · · sγkk , 2).

Let F be a set of s1 elements and G be a set of s2 elementswith s2 dividing s1, denoted by s2|s1. A level-collapsing projection
from F to G, say δ, divides the elements of F into s2 groups, each of size q = s1/s2, and projects any two elements of F to the
same element of G if and only if they belong to the same group. The kernel matrix of δ is an s2 × qmatrix in which each row
consists of the elements of F in the same group (Qian and Wu, 2009). For a matrix A, let A′ denote its transpose. If A takes
entries from F , denote δ(A) as the array obtained from A after its entries are collapsed according to δ.

The definition of asymmetric BSOAs is given as follows. Let H be an OA(n1, s
γ1
11 · · · sγkk1). Suppose the n1 rows of H can be

partitioned into v subarrays each with n2 rows, denoted by Hi, i = 1, . . . , v, and each Hi becomes an OA(n2, s
γ1
12 · · · sγkk2) after

the sj1 levels of the sj1-level factors are collapsed to sj2 levels according to some level-collapsing projection δj, for j = 1, . . . , k.
Then H , or more precisely (H ′

1, . . . ,H
′
v)

′, is called a sliced orthogonal array (SOA). For an SOA H in which each slice Hi is
balanced, it is called a balanced SOA (BSOA). Provided that the sj1’s are not all the same, it is an asymmetric BSOA.

3. Construction of asymmetric BSOAs via Kronecker sum

Similar to the construction of nested OAs withmixed levels in Qian et al. (2009), we propose threemethods of construct-
ing asymmetric BSOAs via the Kronecker sum. Throughout this section, we consider only the level-collapsing projection δ
from an abelian group F to another abelian group G that has the additivity property, i.e., δ(f1 + f2) = δ(f1) + δ(f2) for any
f1, f2 ∈ F .

The Kronecker sum of an n × mmatrix A = (aij) and a u × v matrix B = (blk) based on the same abelian group with the
addition operation ‘+’, is defined to be the nu × mv matrix A ⊕ B = (aij + B), where aij + B denotes the u × v matrix with
entries aij + blk, 1 ≤ l ≤ u and 1 ≤ k ≤ v. Let D(r, c, g) denote a difference matrix (DM), which is an r × c array based on
an abelian group A of g elements such that every element of A appears equally often in the vector difference between any
two columns of the array. Here we present an obvious conclusion for constructing asymmetric OAs in the following lemma
for convenience of later use (Wang and Wu, 1991).

Lemma 1. Suppose A = (A1, . . . ,Ak) is an OA(n, sγ11 · · · sγkk ), where Aj is the subarray corresponding to the sj-level factors with
levels from an abelian group Aj. Let Bj be a D(r, cj, sj) based on Aj, for j = 1, . . . , k. Then H = (A1 ⊕ B1, . . . ,Ak ⊕ Bk) is an
OA(nr, sγ1c11 · · · sγkckk ).

3.1. Using sliced orthogonal arrays and difference matrices

This constructionmakes use of SOAs and differencematrices. For j = 1, . . . , k, let sj1 ≥ sj2 > 1with sj2|sj1, Fj be an abelian
group of sj1 elements, Gj be an abelian group of sj2 elements, and δj be a level-collapsing projection from Fj to Gj, where
the sj1’s are assumed to be all distinct. Suppose A = (A1, . . . ,Ak) is an SOA with v slices, where A is an OA(n1, s

γ1
11 · · · sγkk1),

Aj = (A′

j1, . . . ,A
′

jv)
′ is the subarray ofA corresponding to the sj1-level factorswith levels from Fj, and each slice (A1i, . . . ,Aki)

becomes an OA(n2, s
γ1
12 · · · sγkk2) after the levels of the sj1-level factors are collapsed according to δj, for j = 1, . . . , k and

i = 1, . . . , v.
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