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a b s t r a c t

Zero inflation means that the proportion of 0’s of a model is greater than the proportion

of 0’s of the corresponding Poisson model, which is a common phenomenon in count

data. To model the zero-inflated characteristic of time series of counts, we propose

zero-inflated Poisson and negative binomial INGARCH models, which are useful and

flexible generalizations of the Poisson and negative binomial INGARCH models,

respectively. The stationarity conditions and the autocorrelation function are given.

Based on the EM algorithm, the estimating procedure is simple and easy to be

implemented. A simulation study shows that the estimation method is accurate and

reliable as long as the sample size is reasonably large. A real data example leads to

superior performance of the proposed models compared with other competitive models

in the literature.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the probability model the Poisson distribution is usually assumed for count data; however, in many real applications
it is likely to observe that the number of zeroes is greater than what would be expected for the Poisson model, which is
called zero inflation. The zero inflation is of interest because zero counts frequently have special status, e.g., in counting
disease lesions on plants, a plant may have no lesions either because it is resistant to the disease, or simply because no
disease spores have landed on it. This is the distinction between structural zeros, which are inevitable, and sampling zeros,
which occur by chance (Ridout et al., 1998). Ignoring zero inflation can have at least two consequences; first, the estimated
parameters and standard errors may be biased, and second, the excessive number of zeros can cause overdispersion (Zuur
et al., 2009, p. 269).

In recent years there has been considerable and growing interest in modeling zero-inflated count data, and many
models have been proposed, e.g., the hurdle model (Mullahy, 1986), the zero-inflated Poisson (ZIP) model (Lambert, 1992),
and the two-part model (Heilbron, 1994, also known as the zero-altered model). Ridout et al. (1998) reviewed this
literature and cited examples from econometrics, manufacturing defects, patent applications, road safety, species
abundance, medical consultations, use of recreational facilities, and sexual behavior. For the ZIP model, Böhning (1998)
also reviewed the related literature and provided a variety of examples from different disciplines. As a generalization of the
ZIP model, the zero-inflated negative binomial (ZINB) model has been discussed by many authors, such as Ridout et al.
(2001) considered the score test for testing the ZIP model against the ZINB model. Zeileis et al. (2008) gave a nice
overview and comparison of Poisson, negative binomial, and zero-inflated models in the software R. For a recent review
and applications to ecology, see Zuur et al. (2009, Chapter 11).
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In general, zero-inflated model can be viewed as a mixture of a degenerate distribution with mass at zero and a
nondegenerate distribution such as the Poisson or negative binomial distribution. Now many researchers are still studying
that how to extend and test these models (see, e.g., Xie et al., 2009; Yang et al., 2009; Min and Czado, 2010; Hall and Shen,
2010; Garay et al., 2011). To our best knowledge, all the zero-inflated models are considered in regression context, not yet
in time series context, except that Bakouch and Ristić (2010) considered a zero-truncated Poisson INAR(1) model. But zero
inflation is also common in time series analysis, see the example given in Section 6.

In addition to the zero-inflated characteristic, many time series count datasets also display overdispersion, which
means that the variance is greater than the mean. Overdispersion has been well modeled in the literature, such as the
integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) model proposed by Ferland et al. (2006)
and its various generalizations. The INGARCH model is defined as follows:

Xt9F t�1 : PðltÞ, 8t 2 Z,

lt ¼ a0þ
Xp

i ¼ 1

aiXt�iþ
Xq

j ¼ 1

bjlt�j,

8>><
>>: ð1:1Þ

where a040, aiZ0, bjZ0, i¼ 1, . . . ,p, j¼ 1, . . . ,q, pZ1, qZ0, and F t�1 is the s-field generated by fXt�1,Xt�2 . . .g. This
model has been studied by many authors. Zhu et al. (2008), Zhu and Li (2009) and Zhu and Wang (2010, 2011) considered
various estimation and testing methods. Specially, Zhu and Wang (2011) gave a necessary and sufficient condition for the
existence of higher-order moments. Fokianos et al. (2009) considered geometric ergodicity and likelihood-based inference,
and Fokianos and Fried (2010) transferred the concept of intervention effects to model (1.1). Weiß (2009) derived a set of
equations from which the variance and the autocorrelation function of the general case can be obtained. Weiß (2010a)
derived the unconditional distributions via the Poisson–Charlier expansion, while Weiß (2010b) considered higher-order
moments and jumps. Zhu et al. (2010) extended model (1.1) to the mixture model context, while Zhu (2011) extended the
Poisson deviate to the negative binomial one, which are useful generalizations. For more generalizations, see Fokianos and
Tjøstheim (2011) and Matteson et al. (2011). Fokianos (2011) reviewed some recent progress in INGARCH models.

To model overdispersion and zero inflation in the same framework, we will generalize the Poisson model (1.1) and the
negative binomial model proposed in Zhu (2011) and show the usefulness of these generalizations. The paper is organized
as follows. In Sections 2 and 3 we describe the zero-inflated Poisson INGARCH (ZIP-INGARCH) model and the zero-inflated
negative binomial INGARCH (ZINB-INGARCH) model, respectively. The stationarity conditions and the autocorrelation
functions are given. We discuss the estimation procedure in Section 4 via the EM algorithm. Section 5 presents a
simulation study. In Section 6 we apply the proposed models to a real data example. Section 7 gives some discussions.

2. The zero-inflated Poisson INGARCH model

First, recall the definition of ZIP distribution (see Johnson et al., 2005, Section 4.10.3). A distribution is said to be ZIP
ðl,oÞ if its probability mass function (pmf) can be written in the form

PðX ¼ kÞ ¼odk,0þð1�oÞ
lke�l

k!
, k¼ 0;1,2 . . . ,

where 0ooo1, dk,0 is the Kronecker delta, i.e., dk,0 is 1 when k¼0 and is zero when ka0. The probability generating
function (pgf) is GðzÞ ¼oþð1�oÞelðz�1Þ, then from Lemma 1 in Ferland et al. (2006) we know that the uncentered
moments of X satisfy

EðXm
Þ ¼ ð1�oÞ

Xm

j ¼ 0

SðjÞml
j, ð2:1Þ

where SðjÞm is the Stirling number of the second kind (for details, see Gradshteyn and Ryzhik, 2007, p. 1046). Specially, we
have

EðXÞ ¼ ð1�oÞl, VarðXÞ ¼ ð1�oÞlð1þolÞ4EðXÞ:

Let fXtg be a time series of counts. We assume that, conditional on F t�1, the random variables X1, . . . ,Xn are
independent, and the conditional distribution of Xt is specified by a ZIP distribution. To be specific, we consider the
following model:

Xt9F t�1 : ZIPðlt ,oÞ, lt ¼ a0þ
Xp

i ¼ 1

aiXt�iþ
Xq

j ¼ 1

bjlt�j, ð2:2Þ

where 0ooo1, a040, aiZ0, bjZ0, i¼ 1, . . . ,p, j¼ 1, . . . ,q, pZ1, qZ0, F t�1 is the s-field generated by fXt�1, Xt�2 . . .g.
The above model is denoted by ZIP-INGARCH(p, q). The conditional mean and conditional variance of Xt are given by

EðXt9F t�1Þ ¼ ð1�oÞlt , VarðXt9F t�1Þ ¼ ð1�oÞltð1þoltÞ, ð2:3Þ
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