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a b s t r a c t

We investigate the problem of regression from multiple reproducing kernel Hilbert

spaces by means of orthogonal greedy algorithm. The greedy algorithm is appealing as

it uses a small portion of candidate kernels to represent the approximation of regression

function, and can greatly reduce the computational burden of traditional multi-kernel

learning. Satisfied learning rates are obtained based on the Rademacher chaos complex-

ity and data dependent hypothesis spaces.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Kernel methods have been extensively used in various learning tasks, and its performance largely depends on the data
representation via the choice of kernel function. Due to the practical importance of multi-kernel learning, many studies in
machine learning have been devoted to the data dependent choice of kernel recently, see, e.g., Lanckriet et al. (2004),
Micchelli and Pontil (2005), Wu et al. (2007), Ying and Zhou (2007), Ying and Campbell (2010), and Chen and Li (2010).

In the regression setting, the above mentioned multi-kernel models usually can be formulated as a regularized
framework in reproducing kernel Hilbert spaces. Let us recall some basic concepts of the multi-kernel regularized
regression. Let X be a compact subset of Rd and let Y be contained in ½�M,M�. The product space Z :¼ X � Y is assumed to be
measurable and it is endowed with an unknown probability measure denoted by r. Input–output pairs (x,y) are sampled
according to r. For every x 2 X, let rðy9xÞ be the conditional (w.r.t. x) probability measure on Y and let rXðxÞ be the marginal
probability measure on X. The error for a measurable function f : X-Y is the so-called expected risk

Eðf Þ :¼ Jy�f J2
L2
r
¼

Z
Z
ðy�f ðxÞÞ2 dr:

It is known that the function which minimizes Eðf Þ is the regression function defined by

f rðxÞ ¼

Z
Y

y drðy9xÞ, x 2 X: ð1Þ

From the assumption y 2 ½�M,M�, we know that 9f rðxÞ9rM.
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Set Nm :¼ f1,2, . . . ,mg for any m 2 N. A training set of size m is drawn by sampling m independent and identically
distributed pairs according to r,

z :¼ fzi,i 2 Nmg ¼ fðxi,yiÞ,i 2 Nmg 2 Zm:

Throughout the paper, we restrict our attention to a prescribed set K of candidate Mercer kernels. We say that K :

X � X-R is a Mercer kernel if it is a continuous, symmetric, and positive semi-definite, i.e., for any finite set of distinct
points fx1,x2, . . . ,x‘g � X, the matrix ðKðxi,xjÞÞ

‘
i,j ¼ 1 is positive semi-definite. The candidate reproducing kernel Hilbert space

HK associated with a Mercer kernel K is defined as the closure of the linear span of the set of functions fKx :¼ Kðx,�Þ : x 2 Xg,
equipped with the inner product / � , �SHK

defined by /Kx,KySHK
¼ Kðx,yÞ: The reproducing property is given by

/Kx,fSHK
¼ f ðxÞ, 8x 2 X, f 2 HK : ð2Þ

Denote C(X) as the space of continuous functions on X with the supremum norm J � J1. Because of the continuity of K 2 K
and the compactness of X, we have

k :¼ sup
K2K

sup
x2X

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðx,xÞ

p
o1:

So, the reproducing property above tells us

Jf J1rkJf JK , 8f 2 HK :

The empirical error with respect to the random samples z is defined as

Ezðf Þ :¼ Jy�f Jm ¼
1

m

Xm

i ¼ 1

ðyi�f ðxiÞÞ
2,

where J � Jm is the L2
r norm with respect to the discrete measure ð1=mÞ

Pm
i ¼ 1 dxi

with du is the Dirac measure of u.
In general, the regularization scheme of multi-kernel regression is defined as a two-layer minimization problem

f z,l :¼ argmin
K2K

min
f2HK

fEzðf ÞþlJf J2
Kg, l40: ð3Þ

Its error analysis has been well developed with various techniques in learning theory (see, e.g., Lanckriet et al., 2004;
Micchelli and Pontil, 2005; Ying and Zhou, 2007; Ying and Campbell, 2010; Chen and Li, 2010).

Here we are interested in the case when the total number n of candidate kernels K¼ fKj : j 2 Nng is large, but only a
relatively small number of them is necessary to represent the approximation of regression function f r. Note that the
solution of (3) belongs to the hypothesis space

Hz,K ¼
Xm

i ¼ 1

Xn

j ¼ 1

aj
iK

j
xi
: aj

i 2 R,Kj
2 K

8<
:

9=
;,

which involves expansions of all the candidate kernels and all the training data. This may result in computation burden
when the number of candidate kernels is large. Thus, the sparse representation of solution is crucial to improve the
efficiency of multi-kernel learning.

Only recently there are studies for concerning the sparsity of multi-kernel learning in Koltchinskii and Yuan (2008,
2010). For the multiple kernel regularized method with sparsity penalty, the oracle inequality of excess risk is established
in Koltchinskii and Yuan (2008). In this paper, we consider to realize sparse representation by greedy selection of
important kernels and training samples. We denote the set of candidate kernels is Kkz

, where kz is the number of candidate
kernels after k times of feature selection. The hypothesis space based on kernel selection is defined by

Hkz
z,K ¼

Xm

i ¼ 1

Xtkz

j ¼ t1

aj
iK

j
xi
: aj

i 2 R,Kj
2 K,ti 2 Nm

8<
:

9=
;

with ‘1 norm

Jf J‘1
¼ inf

Xm

i ¼ 1

Xn

j ¼ 1

9aj
i9 : f ¼

Xm
i ¼ 1

Xn

j ¼ 1

aj
iK

j
xi

8<
:

9=
;:

The data dependent hypothesis space Hz,K can be considered as a natural extension from single kernel setting in Xiao and
Zhou (2010) and Shi et al. (2011) to multi-kernel setting.

Based on the hypothesis space, a new multi-kernel orthogonal greedy algorithm (MOGA) is introduced in Table 1.
The algorithm in Table 1 can be divided into two parts: selecting features ffkg and solving the empirical risk

minimization to derive f̂ k. In fact, the goal of the normalization of kernels is to provide the feasibility of error analysis,
which does not affect the predictive performance of the algorithm.

There are some statistical analysis of orthogonal greedy algorithms in learning problem (Barron et al., 2008; Zhang,
2009). However, to the best of our knowledge, there is no any studies of kernel choice by greedy algorithm. Our method
tries to bring together three distinct concepts that have received independent attention in learning theory: multi-kernel
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