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1. Introduction

Kernel methods have been extensively used in various learning tasks, and its performance largely depends on the data
representation via the choice of kernel function. Due to the practical importance of multi-kernel learning, many studies in
machine learning have been devoted to the data dependent choice of kernel recently, see, e.g., Lanckriet et al. (2004),
Micchelli and Pontil (2005), Wu et al. (2007), Ying and Zhou (2007), Ying and Campbell (2010), and Chen and Li (2010).

In the regression setting, the above mentioned multi-kernel models usually can be formulated as a regularized
framework in reproducing kernel Hilbert spaces. Let us recall some basic concepts of the multi-kernel regularized
regression. Let X be a compact subset of R? and let Y be contained in [—-M,M]. The product space Z := X x Y is assumed to be
measurable and it is endowed with an unknown probability measure denoted by p. Input-output pairs (x,y) are sampled
according to p. For every x € X, let p(y|x) be the conditional (w.r.t. x) probability measure on Y and let px(x) be the marginal
probability measure on X. The error for a measurable function f : X—Y is the so-called expected risk

&) = ly—fI% = /Z V—fC0)? dp.
It is known that the function which minimizes £(f) is the regression function defined by
fp(x):/yydp(y\x), xeX. M

From the assumption y € [-M,M], we know that |f,(x)| <M.
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Set Ny :={1,2,...,m} for any m € N. A training set of size m is drawn by sampling m independent and identically
distributed pairs according to p,

z:={z;,i e Ny} ={(x;,y;)),i € Ny} € Z™.

Throughout the paper, we restrict our attention to a prescribed set K of candidate Mercer kernels. We say that K :
X x X—R is a Mercer kernel if it is a continuous, symmetric, and positive semi-definite, i.e., for any finite set of distinct
points {x1,Xy, ...,X,} C X, the matrix (I((xi,xj)){J _, is positive semi-definite. The candidate reproducing kernel Hilbert space
‘Hy associated with a Mercer kernel K is defined as the closure of the linear span of the set of functions {K := K(x,") : x € X},
equipped with the inner product ¢ -, - >4, defined by {Ky,Kj >4, =K(x,y). The reproducing property is given by

Kof Dy =f®), VxeX, feHk. (2)
Denote C(X) as the space of continuous functions on X with the supremum norm | - ll,. Because of the continuity of K € K
and the compactness of X, we have

K := sup sup/K(x,x) < co.

Kek xeX
So, the reproducing property above tells us
”f”oo < K?”f”l(y Vf € Hg.

The empirical error with respect to the random samples z is defined as

-l m
&) 1= ly=flm = > @i=f@x)),
i=1
where Il - Il is the LIZ) norm with respect to the discrete measure (1/m) > " ; 55, with J, is the Dirac measure of u.
In general, the regularization scheme of multi-kernel regression is defined as a two-layer minimization problem

S I 2
fa,:= argmin ?g#?{sz(f)+)du‘\\,<}, 2>0. 3)

Its error analysis has been well developed with various techniques in learning theory (see, e.g., Lanckriet et al., 2004;
Micchelli and Pontil, 2005; Ying and Zhou, 2007; Ying and Campbell, 2010; Chen and Li, 2010).

Here we are interested in the case when the total number n of candidate kernels X = {K’ : j € N,} is large, but only a
relatively small number of them is necessary to represent the approximation of regression function f,. Note that the
solution of (3) belongs to the hypothesis space

m n . . . .
Hax = {Z > oK) ol e RK e IC},

i=1j=1

which involves expansions of all the candidate kernels and all the training data. This may result in computation burden
when the number of candidate kernels is large. Thus, the sparse representation of solution is crucial to improve the
efficiency of multi-kernel learning.

Only recently there are studies for concerning the sparsity of multi-kernel learning in Koltchinskii and Yuan (2008,
2010). For the multiple kernel regularized method with sparsity penalty, the oracle inequality of excess risk is established
in Koltchinskii and Yuan (2008). In this paper, we consider to realize sparse representation by greedy selection of
important kernels and training samples. We denote the set of candidate kernels is Ky, , where k; is the number of candidate
kernels after k times of feature selection. The hypothesis space based on kernel selection is defined by

m tkz . . . .
H’z‘_‘,cz {E Z oci.Kﬁq ol eRK ekt e Nm}
iZ1j=t6

with ¢; norm

m n . m n L.
Iflly, =inf$ > "> |od| : f = LK, b
i=1j =1j=1

j=1 i Jj

The data dependent hypothesis space H;x can be considered as a natural extension from single kernel setting in Xiao and
Zhou (2010) and Shi et al. (2011) to multi-kernel setting.

Based on the hypothesis space, a new multi-kernel orthogonal greedy algorithm (MOGA) is introduced in Table 1.

The algorithm in Table 1 can be divided into two parts: selecting features {¢,} and solving the empirical risk
minimization to derive f - In fact, the goal of the normalization of kernels is to provide the feasibility of error analysis,
which does not affect the predictive performance of the algorithm.

There are some statistical analysis of orthogonal greedy algorithms in learning problem (Barron et al., 2008; Zhang,
2009). However, to the best of our knowledge, there is no any studies of kernel choice by greedy algorithm. Our method
tries to bring together three distinct concepts that have received independent attention in learning theory: multi-kernel
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