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a b s t r a c t

In nonlinear regression models the Fisher information depends on the parameters of the
model. Consequently, optimal designs maximizing some functional of the information matrix
cannot be implemented directly but require some preliminary knowledge about the unknown
parameters. Bayesian optimality criteria provide an attractive solution to this problem. These
criteria depend sensitively on a reasonable specification of a prior distribution for the model
parameters which might not be available in all applications. In this paper we investigate
Bayesian optimality criteria with non-informative prior distributions. In particular, we study the
Jeffreys and the Berger–Bernardo prior for which the corresponding optimality criteria are not
necessarily concave. Several examples are investigated where optimal designs with respect to
these criteria are calculated and compared to Bayesian optimal designs based on a uniform and
a functional uniform prior.

& 2014 Published by Elsevier B.V.

1. Introduction

Nonlinear regression models provide an important tool to describe the relation between a response and a predictor and
have many applications in engineering, physics, biology, economics and medicine, among others (see Ratkowsky, 1983). It is
well known that a good design can improve the accuracy of the statistical analysis substantially and numerous authors have
worked on the problem of constructing optimal designs for nonlinear regression models. An intrinsic difficulty of these
optimization problems consists in the fact that the Fisher information, say Iðx;θÞ, at an experimental condition x depends on
the unknown parameter θAΘ of the model. A common approach in the literature is to assume some prior knowledge of the
unknown parameter, which can be used for the construction of optimal designs. Chernoff (1953) proposed the concept of
local optimality where a fixed value of the unknown parameter is specified, and a design is determined by maximizing a
functional of the information matrix for this specified parameter.

Since this pioneering work numerous authors have constructed locally optimal designs for various regression models
(see He et al., 1996; Khuri et al., 2006; Fang and Hedayat, 2008; Yang and Stufken, 2009; Yang, 2010; Dette and Melas, 2011,
among many others). On the other hand, the concept of local optimality has been criticized by several authors, because it
depends sensitively on a precise specification of the unknown parameters and can lead to inefficient designs if these
parameters are misspecified (see for example Dette et al., 2013, Example 2.1). As a robust alternative Pronzato and Walter
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(1985) and Chaloner and Larntz (1989) proposed Bayesian optimal designs which maximize an expectation of the
information criterion with respect to a prior distribution for the unknown parameters (see also Chaloner and Verdinelli,
1995 for a review). Bayesian optimal designs for various prior distributions have been discussed by numerous authors (see
Haines, 1995; Dette and Neugebauer, 1997; Han and Chaloner, 2003 or Braess and Dette, 2007 among others). However,
there exist many applications where the specification of a prior distribution is difficult and several authors advocate the use
of a uniform prior as a pragmatic approach if no preliminary knowledge about the unknown parameter is available. In a
recent paper it was pointed out by Bornkamp (2012) that for several models the use of a uniform prior as a non-informative
prior does not yield reasonable designs. This author proposed the concept of a functional uniform prior in order to construct
Bayesian optimality criteria with respect to non-informative prior distributions.

In this paper we consider two alternative criteria for the construction of Bayesian optimal designs with respect to non-
informative prior distributions. Roughly speaking, the criteria maximize the predicted Kullback–Leibler distance between the
prior and the posterior distribution for the unknown parameter of the model with respect to the choice of the experimental
design, where – in contrast to the classical approach to Bayesian optimality – the prior distribution depends also on the design of
experiment. This dependence is a natural consequence of the Bayesian point of view in constructing non-informative priors (see
for example Polson, 1992; Ibrahim and Laud, 1991). If the prior is chosen in order to maximize a distance between the prior and
the posterior distribution in a regression model it usually depends on the predictors, i.e. the experimental design. The criteria
based on the Jeffreys prior or the Berger-Bernardo prior are introduced in Section 2, which also gives an introduction into the
field of optimal experimental design. Here it is demonstrated that Bayesian optimal design problems corresponding to non-
informative priors are in general not concave. Necessary conditions for the optimality of a given design are also derived. In
Section 4 we discuss specific mathematical models to obtain a better understanding of the criteria based on the Jeffreys prior or
the Berger-Bernardo prior. In particular we use the theory of canonical moments which is introduced in Section 3 (see also Dette
and Studden, 1997) in order to determine saturated Bayesian optimal designs with respect to non-informative priors for
polynomial regression models with a heteroscedastic error structure. Finally, in Section 5 we consider two frequently used
nonlinear regression models and compare the optimal designs with respect to the criteria based on the Jeffreys prior or the
Berger-Bernardo prior with optimal designs with respect to “classical” Bayesian optimality criteria based on a uniform and a
functional uniform distribution. Most of the designs derived in this paper are saturated designs and do not allow to check the
goodness-of-fit of the postulated model. An interesting topic for future research consists in the development of efficient designs
which are robust with respect to the model assumptions.

2. Optimal design and non-informative priors

An approximate design is defined as a probability measure ξ on the design space X with finite support (see Kiefer, 1974).
If the design ξ has masses ξi at the points xi ði¼ 1;…;mÞ and N observations can be made by the experimenter, this means
that the quantities ξiN are rounded to integers, say Ni, satisfying ∑m

i ¼ 1Ni ¼N, and the experimenter takes Ni observations at
each location xi ði¼ 1;…;mÞ. The corresponding design with masses Ni=N at the points xi ði¼ 1;…;mÞ will be denoted as
exact design ξN . Assume that ξN is an exact design with masses Ni=N at points xi ði¼ 1;…;mÞ and that Ni independent
observations Yi1;…;YiNi

are taken at each xi with density

pðyijjθ; xiÞ; j¼ 1;…;Ni; i¼ 1;…;m; ð2:1Þ

such that

lim
N-1

Ni

N
¼ ξi40; i¼ 1;…;m; ð2:2Þ

where θAΘ is a k-dimensional parameter. For the design ξN we define by

pðyjθ; ξNÞ ¼ ∏
m

i ¼ 1
∏
Ni

j ¼ 1
pðyijjθ; xiÞ

the joint density of the N-dimensional vector Y ¼ ðY11;…;YmNm ÞT . In the following we assume that the prior distribution for
the parameter θ may depend on the design (such as the Jeffreys prior) and consider the problem of maximizing the
expected Kullback–Leibler distance between the prior and the posterior distribution with respect to the choice of the design
ξN , that is

U ξN
� �¼ Z

log
pðθjy; ξNÞ
pðθjξNÞ

� �
� p θ; y ξN

�� �
dθ dy:

� ð2:3Þ

Here pðθjξNÞ denotes the density of the prior distribution of θ, pðθjy; ξNÞ is the density of the posterior distribution of θ given
y and pðθ; yjξNÞ is the density of the joint distribution of ðθ;YÞ. Note that all distributions may depend on the design ξN .

Under regularity assumptions it can be shown by similar arguments as in Chaloner and Verdinelli (1995) that the
expected Kullback–Leibler distance can be approximated by

U ξN
� �� �k

2
log

2π
N

� �
�k
2
þ1
2

Z
logðjMðξN ;θÞjÞpðθjξNÞ dθ�

Z
log p θ ξN

�� �
p θ ξN

�� �
dθ;

�� ð2:4Þ
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