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a b s t r a c t

We consider the problem of construction of optimal experimental designs (approximate
theory) on a compact subset X of Rd with nonempty interior, for a concave and Lipschitz
differentiable design criterion ϕð�Þ based on the information matrix. The proposed
algorithm combines (a) convex optimization for the determination of optimal weights
on a support set, (b) sequential updating of this support using local optimization, and
(c) finding new support candidates using properties of the directional derivative of ϕð�Þ.
The algorithm makes use of the compactness of X and relies on a finite grid Xℓ �X for
checking optimality. By exploiting the Lipschitz continuity of the directional derivatives of
ϕð�Þ, efficiency bounds on X are obtained and ϵ-optimality on X is guaranteed. The
effectiveness of the method is illustrated on a series of examples.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction and motivation

A design measure ξ on a finite set X �Rd with ℓ elements is characterized by the ℓ-dimensional vector of weights W
(nonnegative and summing to one) allocated to the ℓ elements of X . The determination of an optimal measure ξn which
maximizes a concave differentiable criterion ϕð�Þ then forms a finite-dimensional convex problem for which many
optimization algorithms are available, see, e.g., Hiriart-Urruty and Lemaréchal (1993), den Hertog (1994), Nesterov and
Nemirovskii (1994), Ben-Tal and Nemirovski (2001), Boyd and Vandenberghe (2004), and Nesterov (2004) for recent
developments on convex programming. In particular, the cutting plane method of Kelley (1960) is considered by Sibson and
Kenny (1975), and a variant of it (with a modified version of the Equivalence Theorem) by Gribik and Kortanek (1977), see
also Pronzato and Pázman (2013, Chapter 9). However, design problems are usually such that (a) the cardinality ℓ of the
design space, which determines the dimension of the optimization problem to be solved, is large, and (b) there always exists
an optimal measure ξn with a few support points only, i.e., such that only a few components of W are positive (say m, with
m5ℓ). These particularities have motivated the development of specific methods which happen to be competitive
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compared to general-purpose convex-programming algorithms. One may distinguish three main families, see Pronzato and
Pázman (2013, Chapter 9) for a recent survey:

(i) Vertex-directionmethods only increase one component of W at each iteration, all other components being multiplied by
the same factor smaller than one, see Wynn (1970), Fedorov (1972) and also Frank and Wolfe (1956) for a method
originally proposed in a more general context. A significant improvement can be achieved by decreasing some
individual components of W only, which allows us to set some components of W to zero, i.e., to remove support points
from a poorly chosen initial design and sometimes to exchange two components of W (vertex-exchange methods), see
Atwood (1973), St. John and Draper (1975), Böhning (1985, 1986), and Molchanov and Zuyev (2001, 2002).

(ii) In gradientmethods the gradient direction projected on the set of design measures is used as the direction of movement
at each iteration, see Wu (1978a, 1978b) and Atwood (1976) for an extension to a Newton-type method.

(iii) At each iteration of a multiplicative method, each component of W is multiplied by a suitably chosen positive function,
see, e.g., Titterington (1976), Silvey et al. (1978), Torsney (1983), Fellman (1989), Dette et al. (2008), Yu (2010a,b), and
Torsney (2009) for a historical review.

In multiplicative methods all initial weights must be positive, those which should be zero at the optimum decrease
continuously along iterations but typically stay strictly positive, i.e., never achieve exactly zero. The convergence is inevitably
slow close to the optimum. The same phenomenon occurs for vertex-direction methods, unless the decrease of some
particular individual components of W is allowed at some iterations, so that poor initial support points can be removed.
Even in this case, if ℓ is large many iterations are required to identify the components of W which should be positive at the
optimum. Gradient-type methods are also not efficient when ℓ is large.

Several authors tried combinations of different methods to make use of their respective advantages. A very sensible
algorithm is proposed in Wu (1978a,b); it combines a gradient method (always working in a small dimensional subspace)
with a vertex-direction method (which allows a suitable updating of this subspace). A mixture of multiplicative and vertex-
exchange algorithms is proposed in Yu (2011) for D-optimum design; it includes a nearest-neighbor exchange strategy
which helps in apportioning weights between adjacent points in X and has the property that poor support points are
quickly removed from the support of the initial measure. Attractive performance is reported. All the methods above,
however, are restricted to the case where the design space X is finite with l being not too large and, for some of them,
to particular design criteria (D-optimality, for instance).

When one is interested in the determination of an optimal design on a compact subset X of Rd with nonempty interior,
the usual practice consists in discretizing X into a finite set Xℓ with ℓ elements and applying one of the methods above.
When a precise solution is required, then ℓ is necessarily very large (in some cases, ℓ¼ 106 should be considered as a small
number) and none of the methods above is efficient. Refining iteratively a finite grid contained in X is a possible option, see
Wu (1978a), but the search for the optimal design is still performed in a discrete set.

In contrast, the algorithmwe propose makes use of the compactness of X and looks for the optimal support in the whole
set X . A finite grid Xℓ �X is only used to check optimality on Xℓ and, using the Lipschitz continuity of directional
derivatives of ϕð�Þ, to construct an efficiency bound on X . A key ingredient in the algorithm is the separation between the
determination of the support points of ξn (knowing that there are at most m of them) from the determination of the
associated weights (an m-dimensional convex problem).

The determination of the support of ξn is a non-convex problem, usually multimodal, for which the straightforward
application of a global search method (such as the simulated annealing or one of the genetic algorithms) cannot be
recommended. Indeed, these heuristic methods do not use the crucial information about the objective function provided by
the Lipschitz constants, derivatives and convexity of the weight-optimization problem, and most of them do not provide any
indication of the closeness of the returned solution to an optimum, global or local. On the other hand, by using properties of
the directional derivative of ϕð�Þ, we can easily locate good candidates for the support of ξn and thereby we do not need to
perform a global search in the m�d dimensional space Xd. The aim of this paper is to show how these properties can be
combined with algorithms for convex optimization which are classically used in the design for the determination of optimal
weights to yield an efficient method of construction of optimal designs on compact sets.

The paper is organized as follows. Section 2 defines the problem and introduces the notation. Section 3 presents the
algorithm and proves its convergence. A few illustrative examples are given in Section 4 where the results obtained with the
proposed algorithm are discussed. Section 5 concludes and indicates some remaining open issues. A few technical aspects
are collected in the Appendix.

2. Notation and problem statement

Let the design space X be a compact subset of Rd with nonempty interior (typically X ¼ ½�1;1�d) and denote by ΞðXÞ the
set of probability measures on X . Any element ξAΞðX Þ will be called design measure, or shortly design.
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