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a b s t r a c t

We study the asymptotic behavior of posterior distributions for i.i.d. data. We present

general posterior convergence rate theorems which extend several known results on rates

of posterior convergence. Our main tools are the Hausdorff a�entropy introduced by

Xing and Ranneby (2009) and a new notion of prior concentration. Our results are applied

to several statistical models.

& 2011 Published by Elsevier B.V.

1. Introduction

Recently, a major theoretical advance has occurred in the theory of Bayesian consistency for infinite-dimensional models.
Schwartz (1965) first proved that, if the true density is in the Kullback–Leibler support of the prior distribution, then the
sequence of the posterior distributions accumulates in each given weak neighborhood of the true density. It is known that the
condition of positivity of prior mass on each Kullback–Leibler neighborhood in Schwartz’s theorem is not a necessary
condition. When one considers problems like density estimation, it is natural to ask for the almost sure consistency of
Bayesian procedures. Sufficient conditions for the almost sure consistency and for evaluating consistency rates have been
currently developed by many authors. In this paper we study the problem of determining whether the posterior distributions
accumulate in Hellinger neighborhoods of the true density. The rate of thus a convergence can be measured by the size of the
smallest shrinking Hellinger balls around the true density on which posterior masses tend to one as the sample size increases
to infinity. It is known that the convergence rate of posterior distributions can be determined by two quantities: the rate of a
metric entropy and the prior concentration rate. Roughly speaking, the rate of the metric entropy describes how large the
model is, and the prior concentration rate depends on prior masses near the true density. Since the true density is unknown,
the later assumption actually requires that the prior distribution spreads its mass more or less uniformly over the whole
density space. Another elegant approach for determination of the convergence rate of posterior distributions was provided by
Walker (2004), who obtained a sufficient condition for the almost sure consistency by using summability of square root of
prior probability instead of the metric entropy method. In this paper, in dealing with the rate of metric entropies we shall
apply the Hausdorff a�entropy introduced by Xing and Ranneby (2009), which is smaller than widely used metric entropies
and the bracketing entropy. For some important prior distributions of statistical models the Hausdorff a�entropies of all
sieves are uniformly bounded, whereas it is generally impossible to get uniform boundedness of metric entropies of large
sieves. The application of the Hausdorff a�entropy leads to refinements of several theorems on posterior convergence rates,
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for instance, the well known assumptions on metric entropies and summability of square root of prior probability have been
weakened. To handle the prior concentration rate, we shall introduce a new notion of prior concentration which is easier to
use. Finally, we present a result to deal with the posterior convergence at the optimal rate 1=

ffiffiffi
n
p

.
An outline of this paper is as follows. In Section 2 we define the Hausdorff a�entropy with respect to a given prior and then

present general theorems for rates of convergence of posterior distributions. We also give a new approach to compute the
concentration rates. In Section 3 we apply our results to priors based on uniform distribution on finite subsets, log spline
models and finite-dimensional models, which leads to some improvements on known results for these models. The proofs of
the main results are contained in Section 4.

2. Notations and theorems

We consider a family of probability measures dominated by a s�finite measure m in X, a Polish space endowed with a
s�algebra X . Let X1,X2,y,Xn stand for an independent identically distributed (i.i.d.) sample of n random variables, taking
values in X and having a common density f0 with respect to the measure m. Denote by F10 the infinite product distribution of
the probability distribution F0 associated with f0. For two probability densities f and g we denote the Hellinger distance
Hðf ,gÞ ¼ ð

R
Xð

ffiffiffiffiffiffiffiffi
f ðxÞ

p
�

ffiffiffiffiffiffiffiffiffi
gðxÞ

p
Þ
2mðdxÞÞ1=2 and the Kullback–Leibler divergence Kðf ,gÞ ¼

R
Xf ðxÞlogðf ðxÞ=gðxÞÞmðdxÞ. Assume that the

space F of densities is separable with respect to the Hellinger metric and that F is the Borel s�algebra of F. Given a prior
distribution P on F, the posterior distribution Pn is a random probability measure with the following expression:

PnðAÞ ¼PðAjX1,X2, . . . ,XnÞ ¼

R
A

Qn
i ¼ 1 f ðXiÞ Pðdf ÞR

F

Qn
i ¼ 1 f ðXiÞPðdf Þ

¼

R
ARnðf ÞPðdf ÞR
FRnðf ÞPðdf Þ

for all measurable subsets A � F, where Rnðf Þ ¼
Qn

i ¼ 1ff ðXiÞ=f0ðXiÞg is the likelihood ratio. In other words, the posterior
distribution Pn is the conditional distribution of P given the observations X1,X2,y,Xn. If the posterior distribution Pn

concentrates on arbitrarily small neighborhoods of the true density f0 almost surely, then it is said to be consistent at f0 almost
surely. Throughout this paper, the almost sure convergence should be understood as to be with respect to the infinite product
distribution F10 of F0.

Our aim of this article is to present general theorems on posterior convergence rates at f0. By the posterior convergence
rate theorems of Shen and Wasserman (2001) or Ghosal et al. (2000), we know that the prior concentration rate together with
the rate of metric entropy can determine the convergence rate of posterior distributions. More specifically, a key inequality to
determine almost sure convergence rates of posterior distributions is that for each e40,Z

F
Rnðf ÞPðdf ÞZe�3ne2

Pðf : Hðf0,f Þ2Jf0=f J1oe2Þ

almost surely for all sufficiently large n, where JgJ1 stands for the supremum norm of the function g onX. This inequality was
obtained by Ghosal et al. (2000, Lemma 8.4), under mild assumptions. Handling rates of almost sure convergence of posterior
distributions appear in many papers. The reason is that in order to get the convergence rate of posterior distributions one
needs to find a suitable lower bound for the denominator in the expression of posterior distributions, which is true if the prior
P puts sufficient amount of mass around the true density f0 in the sense: Pðf : Hðf0,f Þ2 Jf0=f J1o ~e2

nÞZe�n ~e2
nc for some fixed

constant c. Such a sequence f~eng is referred to as the concentration rate of the priorP around f0. Here we give a weak condition
instead. We use the following premetric:
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:

It is clear that the inequality Jf0=f J1Z1 holds for all densities f and f0 such that the supremum is well-defined, and the quality
holds if and only if f= f0 almost surely. Observe also that H�ðf0,f ÞaH�ðf ,f0Þ and 3�1=2Hðf0,f ÞrH�ðf0,f Þ. Moreover, we have

H�ðf0,f ÞrHðf0,f ÞJ2
3
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1 rHðf0,f ÞJf0=f J1=2
1

which yields

ff 2 F : H�ðf0,f Þr ~eng*ff 2 F : Hðf0,f Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jf0=f J1

q
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ng:

The following simple lemma shows that, for ~en to be a prior concentration rate, it is enough to assume PðW ~en
ÞZe�n ~e2

nc3 ,
where We ¼ ff 2 F : H�ðf0,f Þreg.

Lemma 1. Let e40 and c40. Then the inequality

F10

Z
F
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holds for all n.

Y. Xing / Journal of Statistical Planning and Inference 141 (2011) 3382–3390 3383



Download	English	Version:

https://daneshyari.com/en/article/1148946

Download	Persian	Version:

https://daneshyari.com/article/1148946

Daneshyari.com

https://daneshyari.com/en/article/1148946
https://daneshyari.com/article/1148946
https://daneshyari.com/

