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a b s t r a c t

In longitudinal studies or clustered designs, observations for each subject or cluster are

dependent and exhibit intra-correlation. To account for this dependency, we consider

Bayesian analysis for conditionally specified models, so-called generalized linear mixed

model. In nonlinear mixed models, the maximum likelihood estimator of the regression

coefficients is typically a function of the distribution of random effects, and so the

misspecified choice of the distribution of random effects can cause bias in the estimator.

To avoid the problem of the misspecification of the distribution of random effects, one

can resort in nonparametric approaches. We give sufficient conditions for posterior

consistency of the distribution of random effects as well as regression coefficients.

& 2011 Published by Elsevier B.V.

1. Introduction

In longitudinal studies or clustered designs, observations for each subject or cluster are dependent and exhibit intra-
correlation. To account for such intra-correlation in regression problems, generalized linear mixed models (Breslow and
Clayton, 1993) have been popularly used. In this paper, we consider Bayesian analysis of generalized linear mixed models,
where the distribution of random effects is fully unspecified. We give sufficient conditions for posterior consistency of the
distribution of random effects as well as regression coefficients.

In linear mixed models, the misspecified choice of the random effect distribution does not result in biased estimation of
the regression coefficients. In nonlinear mixed models, however, the maximum likelihood estimator of the regression
coefficients is typically a function of the distribution of random effects, and so the misspecified choice of the distribution of
random effects can cause bias in the estimator. See, for example, Neuhaus et al. (1992), Heagerty (1999), Heagerty and
Zerger (2000) and Heagerty and Kurland (2001).

To avoid the problem of the misspecification of the distribution of random effects, one can resort in nonparametric
approaches. Nonparametric maximum likelihood estimation has been considered by Feinberg et al. (1985), Follman and
Lambert (1989), Lindsay (1983) and Butler and Louis (1997), and Bayesian nonparametric approaches have been
developed by Mukhopadhyay and Gelfand (1997), Kleinman and Ibrahim (1998), Walker and Mallick (1997) and
Dunson (2005).

Posterior consistency has been one of the most important issues in the Bayesian society since the seminar paper of
Doob (1949) and Diaconis and Freedman (1986a,b). Some related literature is Schwartz (1965), Le Cam (1973), Barron
(1986), Barron et al. (1996), Ghosal et al. (1999), Walker (2004), Ameowou-Atisso et al. (2003), Ghosal and Roy (2006),
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Ge and Jiang (2006), Ghosal and van der Vaart (2007), Choi and Schervish (2007), Choi (2008) and Wu and Ghosal (2008).
Even though the model considered in this paper can be considered as a special problem of the models in the
aforementioned papers, however, the previous results are not directly applicable to our problem. The key difficulty in
our problem is the model identifiability, which means that the regression coefficients and the distribution of random
effects are identifiable. In particular, when the distribution of random effects is fully unspecified, the identifiability of the
model is by no means obvious. For linear mixed models, Teicher (1961) proved the identifiability and Butler and Louis
(1997) gave sufficient conditions for the identifiability of generalized linear mixed models. In this paper, we prove the
identifiability by showing the existence of exponentially consistent sequence of test as is done by Ameowou-Atisso et al.
(2003) for linear regression models.

It is interesting to compare our sufficient conditions with those given by Butler and Louis (1997). An important
advantage of our sufficient conditions is that the minimum number of observations in each subject or cluster is equal to
the dimension of random effects while it is larger than the dimension of random effects in Butler and Louis (1997). For
example, in the random intercept model (i.e. the dimension of random effects is 1), the model is identifiable when each
subject or cluster has only one observation based on our results. Of course, we assume that the support of random effects is
compact, which is not required in Butler and Louis (1997). In this sense, the results in this paper can be considered as a
useful alternative to the results of Butler and Louis (1997).

This paper is organized as follows. We describe the model in Section 2. In Section 3, we give sufficient conditions for
posterior consistency and proofs are given in Section 4. To illustrate results, we performed small simulation, whose results
are presented in Section. 5.

2. Model

Consider the following latent linear mixed model:

Tij ¼ XuijbþZuijbiþeij, i¼ 1, . . . ,n, j¼ 1, . . . ,ni:

Here Xij ¼ ðXij1, . . . ,XijpÞu, b¼ ðb1, . . . ,bpÞu are p-dimensional vector of fixed effects’ covariate and corresponding parameters,
and Zij ¼ ðZij1, . . . ,ZijqÞu, bi ¼ ðbi1, . . . ,biqÞu are q-dimensional vector of random effect’ covariate and corresponding parameters
with the distribution F. An error term, eij, is having the known distribution G and independent with bij. Instead of observing
Tij directly, we observe Yij ¼ IðTijZ0Þ: Let Yi ¼ ðY1, . . . ,Yni

Þ, Xi ¼ ðXi1, . . . ,Xini
Þ and Zi ¼ ðZi1, . . . ,Zini

Þ: Let Oi ¼ f0,1gni �Rp�ni �

Rq�ni , i¼ 1,2 . . . ,n be the sample space for Di=(Yi, Xi, Zi) and On
¼
Qn

i ¼ 1 Oi be the sample space for Dn ¼ ðD1, . . . ,DnÞ: The
objective is to make inference on y¼ ðb,FÞ based on the observations Dn.

Let P1y be a probability measure on ðO1,BðO1ÞÞ such that

P1y Dn 2
Yn

i ¼ 1

Ci

 !
¼
Yn

i ¼ 1

Pni

y ðDi 2 CiÞ

for all n and Ci 2 BðOiÞ, i¼ 1, . . . ,n: Note that if Ci ¼ fyig � Ai � Bi where yi 2 f0,1gni ,Ai 2 BðRp�ni Þ and Bi 2 BðRq�ni Þ, then

Pni

y ðDi 2 CiÞ ¼

Z
Ai�Bi

pi,yðyijxi,ziÞp
ni ðxi,ziÞnni ðdxi,dziÞ,

where pni(xi,zi) is the joint density of (Xi,Zi) with respect to a s�finite measure nni and

pi,yðyijxi,ziÞ ¼

Z
Rq

Yni

j ¼ 1

GðxuijbþzuijbiÞ
yij ð1�GðxuijbþzuijbiÞÞ

1�yij dFðbiÞ:

Note that pni(xi,zi) does not depend on y: Also, we assume that there exists a s�finite measure n on R�R such that
nni ðdxi,dziÞ ¼

Qni

j ¼ 1 nðdxij,dzijÞ:

Let Y¼ G� F ð� Rp
�MðRq

ÞÞ be the parameter space, where MðRq
Þ is the space of all probability measures on Rq

equipped with the weak topology. Let P¼ m�P1 is a prior distribution for y¼ ðb,FÞ where m is for b and P1 is for F. For m,
we consider a standard parametric prior such as a multivariate normal distribution and a nonparametric prior for F such as
a Dirichlet process.

Finally, let Pnð�j�Þ : BðYÞ �On-½0,1� is a posterior distribution of y given Dn ¼ ðD1, . . . ,DnÞ, where BðYÞ is the Borel
s�field for Y: Note that

PnðdyjDnÞp
Yn

i ¼ 1

Z
Rq

Yni

j ¼ 1

GðXuijbþZuijbiÞ
Yij ð1�GðXuijbþZuijbiÞÞ

1�Yij dFðbiÞPðdyÞ:

Remark 1. In this paper, we only consider the case of random covariates. However, all of the results proved in this paper
can be modified for nonrandom covariates without much difficulty.

Remark 2. We assume that G is completely known, which may be a limitation. We may introduce unknown parameters in
G (e.g. scale parameters). However, we should be careful since additional unknown parameters in G would make the model
unidentifiable. For example, let s40 be an unknown scale parameter such that GðtÞ ¼ Guðt=sÞ for some given distribution
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