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Abstract

We consider the corrective approach (Theoretical Statistics, Chapman & Hall, London, 1974, p.
310) and preventive approach (Biometrica 80 (1993) 27) to bias reduction of maximum likelihood
estimatorsunder the logistic regressionmodel basedoncase–control data.Theproposedbias-corrected
maximum likelihood estimators are based on the semiparametric profile log likelihood function under
a two-sample semiparametric model, which is equivalent to the assumed logistic regression model.
We show that the prospective and retrospective analyses on the basis of the corrective approach to bias
reductionproduce identical bias-correctedmaximum likelihoodestimators of theodds ratio parameter,
but this does not hold when using the preventive approach unless the case and control sample sizes
are identical. We present some results on simulation and on the analysis of two real data sets.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Logistic regression models are commonly used for modeling binary data and in the
analysis of case–control studies (Breslow and Day, 1980). Let Y be a binary response
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variable and letX be the associatedp×1 vector of explanatory variables. Then the standard
logistic regression model assumes that

P(Y = 1|X = x)= exp(�∗ + ��x)

1+ exp(�∗ + ��x)
≡ �(x; �∗,�), (1.1)

where�∗ is a scale parameter and�=(�1, . . . ,�p)� is ap×1vector of odds ratio parameters.
Under case–control sampling as described byPrentice and Pyke (1979), data are collected
retrospectively in the sense that the value ofX is observed for samples of subjects having
Y = 1 (cases) and havingY = 0 (controls). Specifically, letX1, . . . , Xn0 be a random
sample fromP(x|Y = 0) and, independent ofXi , let Z1, . . . , Zn1 be a random sample
fromP(x|Y = 1). Prentice and Pyke (1979)studied maximum likelihood estimation under
model (1.1) based on case–control data and showed that themaximum likelihood estimators
of the odds ratio parameters and their asymptotic covariance matrices with case–control
sampling may be obtained by applying the prospective logistic regression model (1.1) to
the case–control study as if the data had been obtained in a prospective study.
Let g(x)= f (x|Y = 0) andh(x)= f (x|Y = 1) be, respectively, the conditional density

or frequency functions ofX givenY = 0 andY = 1. Qin and Zhang (1997)showed that
model (1.1) is equivalent to the following two-sample semiparametric model:

X1, . . . , Xn0 are independent with densityg(x),

Z1, . . . , Zn1 are independent with densityh(x)= exp(� + ��x)g(x), (1.2)

where� = �∗ + log{(1− �)/�} with � = P(Y = 1) = 1− P(Y = 0). Throughout this
paper, letG(x) be the cumulative distribution function corresponding tog(x) and let
(x1, . . . , xn0, z1, . . ., zn1) be the observed value of(X1, . . . , Xn0, Z1, . . . , Zn1). Note that
(1.2) is a biased sampling model with weight function exp(� + ��x) depending on the
unknown parameters� and�. For a complete survey of developments in biased sampling
problems, seeVardi (1982, 1985), Gill et al. (1988), Qin (1993), andGilbert et al. (1999)
among others.Qin and Zhang (1997)considered maximum semiparametric likelihood es-
timation of(�,�) under model (1.2) based on a semiparametric profile likelihood function
of (�,�). Their Lemma 1 matchesPrentice and Pyke’s (1979)results.
In theparametric likelihoodsetting forasingle-sampleproblem, it iswell known thatmax-

imum likelihood estimatorsmay be biased when the sample size or the total Fisher informa-
tion is small. Under a parametricmodel subject to the appropriate regularity conditions,Cox
andHinkley (1974, p. 310)showed that the asymptotic bias of themaximum likelihood esti-
mator�̂of aq-dimensional vector parameter�maybewrittenasE(�̂−�)=b(�)/n+o(n−1),
wheren is the sample size. Substituting�̂ for the unknown� in b(�)/n, the bias-corrected
maximum likelihood estimator of� is calculated aŝ�BC = �̂ − b(�̂)/n, which removes
the first-order termb(�)/n from the asymptotic bias of̂�. According toFirth (1993),
this approach to bias reduction is ‘corrective’ rather than ‘preventive’ in the sense that
the maximum likelihood estimator̂� is first calculated, then corrected. Because the ap-
plication of the bias-corrected estimator�̂BC in practice requires the existence of�̂ for a
given finite sample,Firth (1993)proposed a ‘preventive’ approach to bias reduction on
the basis of a modified score function and showed in regular parametric problems that
the O(n−1) bias may be removed from the maximum likelihood estimator�̂ by introduc-
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