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a b s t r a c t

In estimating the population mean of a response variable that is missing at random, the
estimator proposed by Han and Wang (2013) possesses the multiple robustness property,
in the sense that it is consistent if any one of the multiple models for both the missingness
probability and the conditional expectation of the response variable given the covariates is
correctly specified. This estimator is a significant improvement over the existing doubly
robust estimators in the literature. However, the calculation of this estimator is difficult, as
it requires solving equations that may have multiple roots, and only when the appropriate
root is used is the final estimator multiply robust. In this paper, we propose a new way to
define and calculate this estimator. The appropriate root is singled out through a convex
minimization, which guarantees the uniqueness. The new estimator possesses other
desirable properties in addition to multiple robustness. In particular, it always falls into
the parameter space, and is insensitive to extreme values of the estimated missingness
probability.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

For estimation in the presence of missing data, double robustness is a desirable property due to its double protection on
estimation consistency against model misspecification. An estimator is doubly robust if it is consistent when either the
missingness probability or certain characteristic of the full data distribution, usually the conditional expectation of certain
functions of the full data given the observed data, is correctly modeled. In the class of augmented inverse probability
weighted (AIPW) estimators proposed and investigated by Robins et al. (1994), the one that is identified to be locally
efficient has been found to be also doubly robust (Scharfstein et al., 1999), and has been advocated for routine use (Bang and
Robins, 2005). Since then, a variety of doubly robust estimators have been proposed, including Tan (2006, 2008, 2010), Kang
and Schafer (2007) and its discussion, Qin and Zhang (2007), Qin et al. (2008), Rubin and van der Laan (2008), Cao et al.
(2009), van der Lann (2010), Tsiatis et al. (2011), Han (2012), and Rotnitzky et al. (2012). Most of these developments are
based on estimation efficiency concerns. van der Laan and Gruber (2010) established the “collaborative” double robustness
property of the estimators that solve the efficient influence curve estimating equation. Their results indicate that,
consistency can still be achieved under certain combinations of dual misspecifications of the models.

Double robustness, however, still does not provide sufficient protection on estimation consistency in many practical
studies, as it allows only a single model for the missingness probability and a single model for the conditional expectation.
With an unknown data generating process, it is often risky to assume that one of these two models is correctly specified.
To increase the likelihood of correct specification, multiple models may be postulated and fitted. The question then is how to
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combine them into the estimation. See Robins et al. (2007) for some relevant discussion. In the setting of estimating the
population mean of a response variable that is subject to ignorable missingness (Little and Rubin, 2002), Han and Wang
(2013) proposed a weighted estimator that is consistent if any one of those multiple models is correctly specified, either for
the missingness probability or for the conditional expectation. This multiply robust estimator apparently provides more
protection on consistency than the doubly robust estimators.

One big challenge of Han and Wang's (2013) estimation procedure is that their calculation of the weight involves solving
a set of equations that may have multiple roots, yet only when the appropriate root is used is the final estimator multiply
robust. Although some ad hoc suggestions on the numerical implementation have been given, it is still very difficult in
practice to single out the root that satisfies the technical assumptions made to guarantee the multiple robustness. In this
paper, we provide a solution to the multiple-root problem by re-defining the estimator and proposing a new way of
calculation. We define an objective function that is convex on a convex domain, so that a unique minimum exists for this
objective function. We show that the unique minimizer is actually the appropriate root that should be used to calculate the
weight in order to achieve multiple robustness. A Newton–Raphson algorithm searching for this minimizer is presented.

Our proposed estimator possesses other desirable properties in addition to multiple robustness. First, it has the “sample
boundedness” property (Robins et al., 2007; Tan, 2010; Rotnitzky et al., 2012), in the sense that it always lies within the
range of observed responses, and thus within the parameter space of the parameter of interest. Second, the performance of
our estimator is not dramatically influenced by extreme values of the estimated missingness probability. It is well known in
the literature that the sampling distribution of the AIPW estimators can be skewed and highly variable when the “inverse
probability” weight itself is highly variable (Robins et al., 1995; Scharfstein et al., 1999, Robins and Wang, 2000). This occurs
if, for some subjects whose response is observed, the estimated probability of observing the response is close to zero,
causing those subjects to receive extremely large “inverse probability” weights compared to others. In such a case, through
simulation studies, Kang and Schafer (2007) demonstrated that the AIPW estimators can have severe bias even if the models
for both the missingness probability and the conditional expectation are only mildly misspecified. In recent literature, there
have been many efforts trying to overcome this difficulty. See Kang and Schafer (2007) and its discussion, Cao et al. (2009),
Tan (2010), and Rotnitzky et al. (2012). Because our proposed estimator is based on weight different from the “inverse
probability”, the impact of extreme values of the estimated missingness probability is mitigated.

2. A multiply robust estimator

To describe the multiply robust estimator in Han and Wang (2013), let Y denote the response variable, X the vector
of covariates, and n the sample size. Let R¼1 if Y is observed and R¼0 if Y is missing. Assume that PðR¼ 1jY ¼ y;
X ¼ xÞ ¼ PðR¼ 1jX ¼ xÞ, the so-called missing at random mechanism (Little and Rubin, 2002), and denote this probability by
πðxÞ. The observed data are independent and identically distributed triplets ðRiYi;X i;RiÞ ði¼ 1;…nÞ. Let m¼∑n

i ¼ 1Ri be the
number of subjects who have their response observed, and index these subjects by i¼ 1;…;mwithout loss of generality. The
goal is to estimate μ0 ¼ EðYÞ.

The doubly robust AIPW estimator allows a single model for πðxÞ and a single model for aðxÞ ¼ EðYjX ¼ xÞ, and has the
form

μ̂aipw ¼ 1
n

∑
n

i ¼ 1

Ri

π̂ ðXiÞ
Yi�

Ri� π̂ ðX iÞ
π̂ ðX iÞ

â X ið Þ
� �

;

where π̂ ðxÞ and âðxÞ denote the estimated values of πðxÞ and aðxÞ, respectively. The consistency of μ̂aipw is achieved if either
πðxÞ or aðxÞ is correctly modeled. The double robustness of μ̂aipw provides an extra protection on consistency compared to the
inverse probability weighted (IPW) estimator (Horvitz and Thompson, 1952)

μ̂ ipw ¼ 1
n

∑
n

i ¼ 1

Ri

π̂ ðX iÞ
Yi;

which is consistent only if πðxÞ is correctly modeled. As expected, μ̂aipw loses its consistency when neither πðxÞ nor aðxÞ is
correctly modeled. The same is true for most existing doubly robust estimators, with an exception for the one in van der
Laan and Gruber (2010), which may still be consistent under certain combinations of dual misspecifications of the models
for πðxÞ and aðxÞ.

To improve on double robustness, suppose now that multiple models P ¼ fπjðαj; xÞ : j¼ 1;⋯; Jg for πðxÞ and multiple
models A¼ fakðγk; xÞ : k¼ 1;…;Kg for aðxÞ are postulated. Here αj and γk are the corresponding parameters, and we let
α̂ j and γ̂k denote their estimators. Usually, α̂j is taken to be the maximizer of the binomial likelihood

∏
n

i ¼ 1
fπjðαj;X iÞg

Ri f1�πjðαj;X iÞg
1�Ri

;

and γ̂k to be the regression coefficients of a generalized linear model for aðxÞ based on the complete-case analysis.
Define

θ̂
j ¼ 1

n
∑
n

i ¼ 1
πj α̂j;X i

� �
; η̂k ¼ 1

n
∑
n

i ¼ 1
ak γ̂k;X i

� �
:
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