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a b s t r a c t

In the presence of prior information on an unknown parameter of a statistical model,
Bayesian and frequentist estimates based on the same observed data do not coincide.
However, in many standard parametric problems, this difference tends to decrease for
growing sample size. In this paper we consider as a measure of discrepancy (Dn) the
squared difference between Bayesian and frequentist point estimators of the parameter of
a model. We derive the predictive distribution of Dn for finite sample sizes in the case of a
one-dimensional exponential family and we study its behavior for increasing sample size.
Numerical examples are illustrated for normal models.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Bayesian statistics offers the theoretical framework for combining experimental and extra-experimental information on
phenomena under study. As a consequence, Bayesian procedures for inference on an unknown parameter of a statistical
model take into account both experimental data and information on the parameter incorporated in the so-called prior
distribution.

In the presence of pre-experimental information, frequentist and Bayesian procedures, such as point or interval estimates
based on the same observed sample, in general, do not coincide. However, in many standard parametric problems, the
discrepancy between frequentist and Bayesian procedures is rather limited when sampling information dominates the prior
distribution. Furthermore, this conflict tends to disappear as the sample size increases and, for sufficiently large sample
sizes, frequentist procedures may provide good approximations of Bayesian methods.

A paradigmatic example is the estimation problem for the expected value of a normal random variable. In this case (see
Section 4.1 for technical details), given n observations from independent and identically distributed (i.i.d.) normal random
variables, the standard Bayesian estimate of θ is a linear combination of the sampling mean, xn, and of a prior guess on the
parameter, μA:

ð1�anÞxnþanμA; anAð0;1Þ; ð1Þ
where an tends to zero as n diverges. Therefore, for a sufficiently large sample size, ð1�anÞxnþanμACxn, i.e. the Bayesian
estimate (1) is well approximated by the sample mean.
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In most of introductory books on Bayesian inference (see, for instance, Berger, 1985; Bernardo and Smith, 1994; Gelman
et al., 2004; Lee, 2004; O0Hagan and Forster, 2004; Robert, 2001), the progressive reduction of conflict between Bayesian
and frequentist procedures is typically showed only as a limiting result. In this paper we propose a predictive finite-sample
look at the problem, in the case of point estimation. First, we introduce a measure of conflict between a Bayesian and a
frequantist point estimator. Then, we study its predictive distribution. This pre-posterior comparative analysis allows one to:

(i) know in advance (before observing the data) what discrepancy is expected for a sample size, nn, chosen according to a
standard criterion (for instance, a criterion based on the power function of a test);

(ii) evaluate the expected impact of the prior distribution on the predictive discrepancy measure, i.e. quantifying the
degree of informativeness of a prior distribution for given sample sizes.

(iii) evaluate the expected progressive reduction of discrepancy between two competing point estimates as n increases;
(iv) establish the minimum sample size that guarantees, with a chosen probability, that the discrepancy between estimates

is below a given chosen threshold, i.e. how large n must be so that a frequentist estimate provides an approximation of
the Bayesian estimate.

The topic of the paper is related to the more general problem of the relationships between frequentist and Bayesian point
estimation, whose literature is essentially endless. See, for instance, Bayarri and Berger (2004), Berger (1985), Samaniego
and Reneau (1994), Samaniego (2012), Bickel (2012) and references therein.

The paper is organized as follows. In Section 2.1, we introduce Dn, the measure of conflict between a frequentist and a
Bayesian estimator. In Section 2.2 we specify the predictive distribution for Dn to be used. In Section 3 we derive the general
expressions of Dn, its predictive cumulative distribution function (cdf) and its expected value in the case of one-parameter
exponential family with conjugate priors. These results are specialized to the case of the normal model, assuming both
known (Section 4.1) and unknown (Section 4.2) variance. In Section 4.3 we consider an illustrative example based on a
superiority clinical trial. Finally, Section 5 sketches some possible extensions of the presented methodology and Section 6
contains a discussion.

2. Methodology

2.1. A measure of discrepancy between estimators

Let Xn ¼ ðX1;X2;…;XnÞ be a random sample from a probability distribution f nð�jθÞ, where θ is an unknown real-valued
parameter that belongs to the parameter space, Θ. Following the Bayesian inferential approach, we assume that θ is a
random variable, with distribution denoted by πA. For simplicity, assume that ΘDR and that πA is a density function. We will
refer to πA as to the analysis-prior. It models pre-experimental knowledge/uncertainty on θ based, for instance, on subjective
opinion of experts or historical data. Given an observed sample xn ¼ ðx1; x2;…; xnÞ and the likelihood function of θ, f nðxnjθÞ,
the posterior distribution of the parameter is

πðθ xnj Þ ¼ f nðxnjθÞπAðθÞR
Θf nðxnjθÞπAðθÞ dθ

:

We denote a Bayesian estimator of θ as ξ̂BðXnÞ whereas ξ̂F ðXnÞ is a generic consistent frequentist estimator. In this paper we
consider the posterior expectation of the parameter θ, EðθjXnÞ ¼

R
ΘθπðθjxnÞ dθ, as ξ̂B and the maximum likelihood estimator

(MLE) as ξ̂F . Nevertheless, all the following can be extended to other Bayesian and frequentist point estimators. As a measure
of discrepancy between ξ̂B and ξ̂F we consider the standard squared difference:

DnðXnÞ ¼ ½ξ̂BðXnÞ� ξ̂F ðXnÞ�2:
Before observing the data, ξ̂B, ξ̂F and Dn are random variables (functions of Xn). We assume that, as n tends to infinity, Dn

converges in probability to zero. Therefore, as the sample size increases, Bayesian and frequentist point estimators tend to
become closer and closer. In the next section we specify the predictive distributions of Dn that we will use in the following.

2.2. Predictive analysis

Studying the predictive distribution of Dn is a typical pre-posterior problem. There are two main approaches to Bayesian
pre-posterior analysis: the conditional and the predictive approaches. See, for instance, Chaloner and Verdinelli (1995), in the
context of general Bayesian experimental design, and De Santis (2006), in the context of sample size determination. The
conditional approach prescribes the use of the sampling distribution f nð�jθÞ, with θ¼ μD, a “guess-value” for the unknown
parameter. This method takes into account a single value for θ at the pre-experimental phase of the analysis and leads to
predictive evaluations that depend on this chosen value μD. The predictive approach implies the use of the prior predictive
distribution

mDðxnÞ ¼
Z
Θ
f nðxnjθÞπDðθÞ dθ;
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