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a b s t r a c t

We propose a mixture of latent variables model for the model-based clustering,

classification, and discriminant analysis of data comprising variables with mixed type.

This approach is a generalization of latent variable analysis, and model fitting is carried

out within the expectation-maximization framework. Our approach is outlined and a

simulation study conducted to illustrate the effect of sample size and noise on the

standard errors and the recovery probabilities for the number of groups. Our modelling

methodology is then applied to two real data sets and their clustering and classification

performance is discussed. We conclude with discussion and suggestions for future work.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of this paper is to introduce methodology to perform model-based clustering, classification, and
discriminant analysis on data sets comprising variables of mixed type. We say that data comprise variables of mixed
type when more than one type of variable is present; e.g., data may contain both categorical and interval variables (cf.
Section 4.1). Within the literature, little work has been done on the clustering or classification of such data. Our approach
is based on extending the latent variable analysis approach to handle variables of mixed type (cf. Bartholomew and Knott,
1999). In this paper, we propose a way to incorporate methodologies from latent variable mixture models.

The idiom ‘latent variable model’ is a blanket term for a class of models that includes latent class analysis, latent trait
analysis, factor analysis, and latent factor models. Most latent variable models (cf. Eq. (1)) assume that the observed (or
manifest) variables within an observation xi ¼ ðxi1, . . . ,xipÞ are independent given an unobservable, or latent, variable
Yi ¼ yi with dimension qop. However, some latent variable models allow dependence between variables conditional upon
the latent variable. Herein, we will assume conditional independence. In both latent trait and factor analyses, the latent
variable is assumed to have a standard Gaussian distribution; the observed data are either categorical (latent trait analysis)
or Gaussian (factor analysis).

Within this framework, the density function of p-dimensional random vector Xi has the form:

f ðxiÞ ¼

Z
f ðxi9y,hÞhðyÞ dy¼

Z Yp

j ¼ 1

giðxij9y,hjÞhðyÞ dy, ð1Þ
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where giðxij9y,hjÞ is the conditional distribution of Xij given Y¼ y and parameters hj, and hðyÞ is the marginal distribution of
Y. If the variable Xij is categorical with levels 0;1, . . . ,cj�1, then the conditional distribution Xij9y,hj is Bernoulli with
success probability:

gðxij ¼ s9y,hjÞ ¼

Qci�1
s ¼ 0½expfbjs0þb0jsyg�

xijðsÞ

1þ
Pcj�1

k ¼ 1 expfbjk0þb0jkyg
, ð2Þ

where xijðsÞ ¼ 1 if the response falls into category s and xijðsÞ ¼ 0 otherwise, bjs ¼ ðbjs1, . . . ,bjsqÞ is a vector of coefficients,
bjs0 2 R, and hj again denotes the parameters for variable j. The category associated with s¼0 is called the reference
category. On the other hand, if Xij is an interval variable then it is assumed to have a Gaussian conditional distribution
given by

gðxij9y,hjÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi

2psj

p exp �
1

2

xij�bj0�b0jy

sj

 !2
8<
:

9=
;, ð3Þ

where bj ¼ ðbj1, . . . ,bjqÞ. This methodology can be seen as combining latent trait and latent factor analyses into a single
model. Note that we are using a linear latent variable model (cf. Eqs. (2) and (3)). Although not considered herein, one
could extend our approach to accommodate non-linear models (e.g., Lawrence, 2005).

In clustering and classification applications, the goal is to find sub-populations within a given data set. Finite mixture
models assume that a population is a convex combination of a finite number of densities and so they are naturally suited
to clustering and classification problems. Finite mixture models have been used for clustering for almost 50 years (cf.
Wolfe, 1963; Fraley and Raftery, 2002) and have received renewed attention over the past decade or so. A p-dimensional
random vector X is said to arise from a parametric finite mixture distribution if, for all x � X, we can write
xðx9!Þ ¼

PG
g ¼ 1 Zgcgðx9hgÞ, where Zg 40 such that

PG
g ¼ 1 Zg ¼ 1 are the mixing proportions, !¼ ðZ1, . . . ,ZG,h1, . . . ,hGÞ is

the vector of parameters, and c1ðx9h1Þ, . . . ,cGðx9hGÞ are the component densities. Gaussian mixture models have garnered
most of the attention within the literature due to their mathematical tractability (recent examples include Dean et al.,
2006; McNicholas, 2010). However, the efficacy of the Gaussian approach is confined to continuous variables; i.e., to
interval data.

The remainder of this paper is laid out as follows. In Section 2, we introduce our modelling framework before discussing
parameter estimation and model selection. We also explain why mixtures of latent class analyzers are not considered. In
Section 3, we present a simulation study to illustrate our mixture modelling approach to clustering and another to
illustrate classification and discriminant analysis. Our approach is then applied to real data (Section 4), where clustering,
classification, and discriminant analysis are again considered. The paper concludes in Section 5 with a summary and
suggestions for future work.

2. Methodology

2.1. Model-based clustering framework

Model-based clustering, model-based classification, and model-based discriminant analysis are similar frameworks,
with model fitting in one case analogous to the other. First, we shall illustrate our proposed method within the model-
based clustering paradigm; we extend the latent variable model depicted in Eq. (1) by applying mixture model
methodology. We assume that the independent observations x1, . . . ,xn arise from a finite mixture model and that the
effect of the latent variable y is different for each component. If the observed data have mixed type, then the mixture of
latent variables model has the form

f ðxiÞ ¼

Z XG

g ¼ 1

f ðxi9y,hgÞZg

" #
hðyÞ dy¼

XG

g ¼ 1

Zg

Z Yp

j ¼ 1

f ðxij9y,hgjÞhðyÞ dy

2
4

3
5 ð4Þ

and the log-likelihood is

lð!9x1, . . . ,xnÞ ¼
Xn

i ¼ 1

log
XG

g ¼ 1

Zg

Z Yp

j ¼ 1

f ðxij9y,hgjÞhðyÞ dy

2
4

3
5

8<
:

9=
;: ð5Þ

When the manifest variables in Eq. (4) have a categorical conditional distribution, the integral cannot be solved
analytically; however, when they have a Gaussian conditional distribution, this integral can be solved analytically.

2.2. Model fitting

Parameter estimation is carried out using an expectation-maximization (EM) algorithm (Dempster et al., 1977). The EM
algorithm is an iterative technique that facilitates maximum likelihood estimation when data are incomplete or treated as
being incomplete. In our case, the missing data comprise the group memberships and the latent variables. We denote the
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