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Abstract

In this paper we analyze a large class of semiparametric M-estimators for single-index models,
including semiparametric quasi-likelihood and semiparametric maximum likelihood estimators. Some
possible applications to robustness are also mentioned. The definition of these estimators involves
a kernel regression estimator for which a bandwidth rule is necessary. Given the semiparametric
M-estimation problem, we propose a natural bandwidth choice by joint maximization of the M-
estimation criterion with respect to the parameter of interest and the bandwidth. In this way we extend
a methodology first introduced by Härdle et al. (Ann. Statist. 21 (1993) 157) for semiparametric least-
squares. We prove asymptotic normality for our semiparametric estimator. We derive the asymptotic
equivalence between our bandwidth and the optimal bandwidth obtained through weighted cross-
validation. Empirical evidence obtained from simulations suggests that our bandwidth improves the
higher order asymptotics of the semiparametric M-estimator when it replaces the usual bandwidth
chosen by cross-validation.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the problem of estimating a regression function m(x) = E(Y |X = x) from
independent copies (Y1, X

T
1 )T, . . . , (Yn, X

T
n )T of a random vector (Y, XT)T ∈ Rd+1. In

GLM (generalized linear models; e.g., McCullagh and Nelder, 1989) it is assumed that
m(x) = r0(x�0) with r0 known. Hereafter, x� is a notation for xT� when x, � ∈ Rd . The
function r0 is the inverse of the so-called link function. Moreover, the conditional density
fY |X=x of Y given X = x belongs to the linear exponential family, that is

fY |X=x(y) = exp [B(r0(x�0)) + C(r0(x�0))y + D(y)],
where B, C and D are known functions.

A natural extension of GLM is provided by the semiparametric single-index models
(SIM), where one only assumes the existence of some �0 ∈ Rd (unique up to a scale
normalization factor) such that

E(Y | X) = E(Y | X�0), (1.1)

that is m(x)=r0(x�0), with unknown r0. Since the regression r0(t)=E(Y | X�0=t) depends
on �0, hereafter, we shall write r�0 instead of r0. In SIM framework, both �0 and r�0 are
to be estimated. Numerous semiparametric approaches for root-n consistent estimation of
�0 have been proposed: M-estimation (e.g., Ichimura, 1993; Sherman, 1994b; Delecroix
and Hristache, 1999; Xia and Li, 1999; Xia et al., 1999), direct (average derivative based)
estimation (e.g., Powell et al., 1989; Härdle and Stoker, 1989; Hristache et al., 2001a, b),
iterative methods (e.g., Weisberg and Welsh, 1994; Chiou and Müller, 1998; Bonneu and
Gba, 1998; Xia and Härdle, 2002).

Typically, the semiparametric M-estimators mentioned above can be written as

�̂ = arg max
�

1

n

n∑
i=1

�
(
Yi, r̂

i
�,h

(Xi�)
)

�n(Xi), (1.2)

where r̂ i
�,h

(t) is, for instance, the leave-one-out Nadaraya–Watson estimator (with band-
width h) of r�(t)=E(Y | X�=t), −� is a contrast function and �n(·) is a so-called trimming
function introduced to guard against small values for the denominators appearing in r̂ i

�,h
(t).

Finally, the regression function m(x) is estimated by r̂̂�,h
(x�̂). Other smoothers, such as

local polynomials and splines, can replace the Nadaraya–Watson estimator.
In order to estimate �0 and r�0(·�0), two smoothing parameters seem to be necessary. First,

after choosing a primary bandwidth h, the estimator �̂ is computed as in (1.2). Afterwards,
r�0(x�0) is estimated by r̂̂�,h∗(x�̂), a kernel estimator, with bandwidth h∗, of the expectation

of Y given x�̂. The rates of decay for the two bandwidths should verify some conditions.
When �(y, r) = −(y − r)2, Härdle et al. (1993) defined more directly
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