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Abstract

In this paper, we consider inference based on very general divergence measures under assumptions
of a logistic regression model. We use the minimum �-divergence estimator in a �-divergence statistic,
which is the basis of some new statistics, for solving the classical problems of testing in a logistic
regression model. A diagnostic analysis is developed based on the new estimators and test statistics.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A common name for a regression model for categorical response variables is logistic
regression model since the regression part of the models, i.e., a linear combination of the
values of the explanatory variables and the regression coefficients, is a logistic transforma-
tion of the probabilities of the response categories. The usefulness of this transformation lies
in the fact, that it transforms the interval between 0 and 1 on to the real axis (−∞, ∞). The
logistic regression model assumes that we have a vector of independent random variables,
Y1, . . . , YI , such that Yi is distributed as a Binomial with parameters ni and �i , i =1, . . . , I .
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We assume that �i depends on k+1 explanatory variables and k+1 regression coefficients,
i.e.,

�i =
exp

(
�0 +∑k

j=1 �j xij

)
1 + exp

(
�0 +∑k

j=1 �j xij

) , i = 1, . . . , I, (1)

where �i is the inverse to the common logit function

logit(�i ) = log(�i/(1 − �i )) = �0 + �1xi1 + · · · + �kxik.

Let �=(�0, . . . , �k)
T be a (k+1)×1 vector of unknown parameters with �i ∈ (−∞, ∞).

We will assume xi0 = 1, i = 1, . . . , I and we denote by xi = (xi0, . . . , xik) and by X the
I × (k + 1) matrix with rows xi , i = 1, . . . , I . We also shall assume that rank(X) = k + 1.

If we denote by n11, . . . , nI1 the observed values of the random variables Y1, . . . , YI and
�(xT

i �) = �i it is well-known that the likelihood function for the logistic regression model
is given by
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so the point maximum likelihood estimator (MLE), �̂, is obtained minimizing almost surely
over

� = {(�0, . . . , �k

) : �i ∈ (−∞, ∞), i = 0, . . . , k}
the expression
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where �i1 = �(xT
i �), �i2 = 1 − �(xT

i �), ni2 = ni − ni1, (i = 1, . . . , I ) and N =∑I
i=1 ni .

Therefore, the MLE, see Pardo et al. (2004), can be defined by

�̂ = arg min
�0,�1,...,�k

DKullback (p̂, p(�)) ,

where
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p(�) ≡ (p11(�), p12(�), . . . , pI1(�), pI2(�))T
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and

DKullback(p, q) =
k∑

i=1

pi log
pi

qi
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