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Abstract

In this paper, we consider inference based on very general divergence measures under assumptions
of alogistic regression model. We use the minimum ¢-divergence estimator in a ¢-divergence statistic,
which is the basis of some new statistics, for solving the classical problems of testing in a logistic
regression model. A diagnostic analysis is developed based on the new estimators and test statistics.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A common name for a regression model for categorical response variables is logistic
regression model since the regression part of the models, i.e., a linear combination of the
values of the explanatory variables and the regression coefficients, is a logistic transforma-
tion of the probabilities of the response categories. The usefulness of this transformation lies
in the fact, that it transforms the interval between 0 and 1 on to the real axis (—o0, 00). The
logistic regression model assumes that we have a vector of independent random variables,
Y1, ..., Y, suchthat Y; is distributed as a Binomial with parameters n; and n;, i =1, ..., I.
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We assume that 7; depends on k + 1 explanatory variables and k + 1 regression coefficients,
i.e.,

exp (ﬂo + lezl ﬂjxij)
= i=1,...,1, (1)

1 4 exp (/30 + Zf‘:] ﬁjxij)

where 7; is the inverse to the common logit function

logit(m;) =log(m; /(1 — m;)) = fo + frxit + - - + Prxik.

Let f=(py, - - -, ﬁk)T be a (k+1) x 1 vector of unknown parameters with f§; € (—o0, 00).
We will assume x;o =1,i =1, ..., I and we denote by x; = (xjo, ..., Xjx) and by X the
I x (k 4+ 1) matrix with rows x;,i =1, ..., I. We also shall assume that rank(X) =k + 1.

If we denote by ny1, . .., nyj the observed values of the random variables Yy, ..., Y7 and
7t()cl.T p) = m; it is well-known that the likelihood function for the logistic regression model
is given by
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so the point maximum likelihood estimator (MLE), f3, is obtained minimizing almost surely
over

O ={(Bos---. Bi) : B € (00, 00), i =0,....k)

the expression
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where 7;1 = n(xiTﬂ), Tio=1— n(xiT,B),nig =n; —n;1,(i=1,...,])and N = 21'121 n;.
Therefore, the MLE, see Pardo et al. (2004), can be defined by

p=arg min 5 Dxuliback (P, P())
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