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a b s t r a c t

We consider the estimation of a density function on the basis of a random sample from a
weighted distribution. We propose linear and nonlinear wavelet density estimators, and
provide their asymptotic formulae for mean integrated squared error. In particular, we
derive an analogue of the asymptotic formula of the mean integrated square error in the
context of kernel density estimators for weighted data, admitting an expansion with
distinct squared bias and variance components. For nonlinear wavelet density estimators,
unlike the analogous situation for kernel or linear wavelet density estimators, this
asymptotic formula of the mean integrated square error is relatively unaffected by
assumptions of continuity, and it is available for densities which are smooth only in a
piecewise sense. We illustrate the behavior of the proposed linear and nonlinear wavelet
density estimators in finite sample situations both in simulations and on a real-life
dataset. Comparisons with a kernel density estimator are also given.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let X be a random variable with cumulative distribution function (c.d.f.) F and probability density function (p.d.f.) f with
respect to Lebesgue measure on the line. Assuming to have available n independent direct realizations X1;X2;…;Xn of X, the
optimal nonparametric estimate of f can be easily obtained (see, e.g., Silverman, 1986; Wand and Jones, 1995; Efromovich,
1999).

In practice, it may happen that drawing a direct sample from X is impossible and some kind of bias is introduced in the
sampling scheme. So, we consider the problem of nonparametric estimation of f given a sample of n independent and
identically distributed observations Xw

1 ;X
w
2 ;…;Xw

n from a weighted distribution with p.d.f. fw given by

f w xð Þ ¼wðxÞf ðxÞ
μw

; ð1Þ

where w is the so-called weighting (or biasing) function and 0oμw ¼ EðwðXÞÞo1 (see, e.g., Patil et al., 1988). In what
follows, it is always assumed that w is a given function satisfying 0oc1rwðxÞrc2o1 for all x.

The concept of biased data is well known and its practical applications range from social sciences and biology
to economics and quality control. These observations arise when a sampling procedure chooses an observation
with probability that depends on the value of the observation. The traditional length-bias size or size-biased (wðxÞ ¼ x),
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for f supported on the positive half-line, occurs when the probability of an observation is proportional to the length of the
observation itself, and arises naturally in industrial and work sampling, in sampling from stochastic processes such as
queues, telephone networks and renewal processes (see, e.g., Cox, 1969; Vardi, 1982; Dewanji and Kalbfleisch, 1987; Kvam,
2008). Other examples include wild life population, line transect sampling and ecology (Eberhardt, 1978; Patil and Rao,
1978; Hanberry et al., 2012), cell cycle kinetics and early screening for disease (Zelen and Feinleib, 1969; Zelen, 1974, 2004),
genome-wide linkage studies (Terwilliger et al., 1997), and epidemiologic cohort studies (Keiding, 1991; Gail and Benichou,
2000; Gordis, 2000; Sansgiry and Akman, 2000; Scheike and Keiding, 2006).

The fundamental result in the theory of weighted data is from Cox (1969), where the following estimator of F was
suggested

~F ðxÞ�1μ̂w ∑
n

i ¼ 1
w�1ðXw

i ÞIðXw
i rxÞ; ð2Þ

where μ̂w ¼ nf∑n
i ¼ 1w

�1ðXw
i Þg

�1 and IðAÞ denotes the indicator function of the set A. Hence, for weighted data, this estimator
plays the same role as the empirical distribution function for direct data. Later, Vardi (1982) and Vardi (1985) showed that ~F
is the nonparametric maximum likelihood estimator of F for this situation, and that μ̂w is a

ffiffiffi
n

p
-consistent estimator of μw.

Bhattacharyya et al. (1988) and Jones (1991) proposed kernel estimators of f for weighted data from model (1). The
former estimator, although a little more ad-hoc, first estimates fw by an ordinary kernel estimator on Xw

1 ;X
w
2 ;…;Xw

n and then
uses the relationship between f and fw to obtain an estimator of f. The latter estimator is more natural and is derived from
kernel smoothing of the nonparametric maximum likelihood estimator ~F of F given in (2). Jones (1991) showed that his
estimator has various advantages over the estimator proposed by Bhattacharyya et al. (1988), including better asymptotic
mean integrated squared error (MISE) properties. Multivariate extensions for both kernel density estimators were
considered in Ahmad (1995). Whereas minimax results in the univariate case, for a Hölder class of smooth functions, were
obtained in Wu (1995) and Wu and Mao (1996). A Fourier series estimator of f for weighted data from model (1) was
proposed by Jones and Karunamuni (1997), while a transformation-based estimator was suggested by El Barmi and Simonof
(2000). Sharp minimax results of a blockwise shrinkage estimator of f for weighted data from model (1), based on a
projection estimator on trigonometric polynomial spaces and with a threshold, for a Sobolev class of smooth functions, were
obtained in Efromovich (2004a), while sharp minimax results for an estimator of F, via a projection on trigonometric bases
too, and of f by differentiation, for a class of analytic c.d.f.'s, were derived in Efromovich (2004b). A penalized projection
estimator of fwas built by Brunel et al. (2009) and the exact minimax rate of convergence under the L2-risk over a particular
Besov class was proved. This estimator generalizes the Efromovich–Pinsker adaptive estimator (Efromovich, 2004b)
allowing generic orthonormal bases.

Recently, the density estimation problem for biased data using wavelets has also been addressed in several papers.
Chesneau (2010) constructs an adaptive estimator of f based on an Lp-version of the BlockShrink algorithm initially
developed by Cai (2002) for another statistical framework using dyadic wavelets. The author proves that the estimator
attains near optimal rates of convergence. Ramirez and Vidackovic (2010) discuss the more general context of stratified size
biased data proposing a nonlinear dyadic wavelet density estimator for such data. They prove consistency of their estimator
in the MISE sense.

In this paper, we propose linear and nonlinear wavelet estimators of f for weighted data from model (1) using nondyadic
wavelets as in Hall and Patil (1995a,b) and Hall and Penev (2001). We provide asymptotic formulae for MISE. We derive
an analogue of the asymptotic formula of the MISE in the context of kernel density estimators for weighted data, admitting
an expansion with distinct squared bias and variance components. For nonlinear wavelet density estimators, unlike the
analogous situation for kernel or linear wavelet density estimators, this asymptotic formula of the MISE is relatively
unaffected by assumptions of continuity, and it is available for densities which are smooth only in a piecewise sense.
Moreover, it is shown that nonlinear wavelet density estimators possess a property which guarantees a high level of
robustness against oversmoothing, not encountered in the context of kernel (see van Eeden, 1985; van Es, 2001) or linear
wavelet density estimators for weighted data.

The paper is organized as follows. In Section 2, we briefly discuss basic elements on orthonormal wavelets, and describe
the proposed linear and nonlinear wavelet density estimators for weighted data. In Section 3, we discuss the asymptotic
MISE formulae for both wavelet density estimators in the context of smooth densities. For nonlinear wavelet density
estimators it is shown that the MISE formula is unaffected by discontinuities. In Section 4, we illustrate the numerical
performance of the proposed linear and nonlinear wavelet density estimators in finite sample situations by considering both
a simulated and a real-life dataset reporting an example of length-bias sampling scheme. We also provide comparisons with
the weighted kernel density estimator proposed by Jones (1991). In Section 5, we provide concluding remarks. Finally, in
Section Appendix A (Appendix), we provide the proofs of the theoretical results stated in Section 3.

2. Wavelet density estimators for weighted data

The term wavelet is used to refer to a set of orthonormal basis functions generated by dilation and translation of a
compactly supported scaling function (or father wavelet), Φ, and a mother wavelet, Ψ , associated with an r-regular (r40)
multiresolution analysis of L2ðRÞ, the space of squared integrable functions on the line (see, e.g., Mallat, 1999).
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