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This paper demonstrates that flexible and statistically tractable multi-modal diffusion
models can be attained by transformation of simple well-known diffusion models such
as the Ornstein-Uhlenbeck model, or more generally a Pearson diffusion. The transformed
diffusion inherits many properties of the underlying simple diffusion including its mixing
rates and distributions of first passage times. Likelihood inference and martingale
estimating functions are considered in the case of a discretely observed bimodal diffusion.
It is further demonstrated that model parameters can be identified and estimated when
the diffusion is observed with additional measurement error. The new approach is applied
to molecular dynamics data in the form of a reaction coordinate of the small Trp-zipper
protein, from which the folding and unfolding rates of the protein are estimated. Because
the diffusion coefficient is state-dependent, the new models provide a better fit to this
type of protein folding data than the previous models with a constant diffusion coefficient,

particularly when the effect of errors with a short time-scale is taken into account.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we propose a new class of stationary stochastic differential equation models that have multi-modal
invariant distributions. These models are useful for modelling dynamical systems that switch randomly between two or
more regimes. As an example, we consider molecular dynamics data in the form of a protein reaction coordinate with two
regimes corresponding to the folded and unfolded states of the protein, respectively. However, applications of bimodal
diffusions are not limited to the study of molecular dynamics. Other applications of bimodal diffusion are as models of the
global climate where the two regimes could be a cold and a hot climate as in Imkeller and Pavlyukevich (2002), and as
financial models of e.g. interest rates subject to changes in the underlying financial and economic mechanisms as in
Ait-Sahalia (1996).

Traditionally bimodal diffusion processes have been constructed by a stochastic differential equation with additive noise
for a process moving in a double-well potential, i.e. a stochastic differential equation of the form

dY; = —V'(Yy) dt+o? dBy, 1)

where {B;} is a Wiener process and V is a potential with two valleys. Under the condition that V(y) goes to infinity at the
boundaries of the state space and that the function h(y) = exp{—2V(y)/¢?} is integrable on the state space, {Y,} is ergodic
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with invariant density being proportional to h(y). An often studied example is given by the potential V(y) = 0y?(y? —2) with
6 > 0, for which the drift is —46(y3 —y) = —46y(y+ 1)(y — 1). This simple potential has wells of the same depths at 1 and —1
and is symmetric around a separating potential barrier at 0. The related diffusion is ergodic with invariant density being
proportional to exp{ —26(y* —2y?)}. It is easy to generalize this model to models with wells at other points that need not be
symmetric around the separating potential barrier. The double well potential models are the state of the art in the analysis
of protein reaction coordinates such as the one considered in our case study. That is, constant diffusion is usually assumed
and used in the estimation of the protein folding rates, see e.g. Socci et al. (1996). A more complex model of molecular
dynamics was presented in Pokern et al. (2009) who used a partially observed hypoelliptical diffusion to model the dihedral
angle in a butane molecule. Still this model assumes a constant diffusion coefficient which may conflict with that of the data.
More recently evidence of non-constant diffusion in protein reaction coordinates has been reported in several articles. Best
and Hummer (2010) discuss these findings and their implications for the assessment of protein folding rates.

Our new class of bimodal diffusions is obtained by applying particular transformations to simple well-known diffusions
such as the Ornstein-Uhlenbeck process or a general Pearson diffusion; see Forman and Serensen (2008). This leads to
diffusion models with nonlinear drift and non-constant diffusion coefficients that are still highly tractable both from a
statistical and a computational point of view. A major point of this paper is that many properties of diffusions are preserved
by transformation. These include stationarity, mixing properties, and distributions of first passage times. Also the
eigenvalues of the infinitesimal generator of the diffusion are preserved by the transformation, and eigenfunctions
transform in a straightforward way. This facilitates efficient approximate likelihood inference by means of e.g. the explicit
martingale estimating functions proposed by Kessler and Sgrensen (1999). In the rare cases where the likelihood function of
a diffusion is explicitly known, this is also the case for any of its transformations. Similarly to the double well potential
models, our new diffusion models allow for great flexibility in the modelling of the invariant marginal distribution. Thus, the
new bimodal diffusion models provide a useful extension of the class of bimodal diffusion models.

An alternative to the stochastic differential equation approach is to model each regime separately and to let the shifts
between the models be determined by an underlying finite-state process such as a hidden Markov model or a Markov state
model. These models are widely employed as models of protein folding, see Prinz et al. (2011) for a review, although it is
recognized that the models are inadequate in describing the more gradual transition between states which is the de facto
behaviour of many proteins. Latent Markov state models are also very popular in financial and econometric applications, see
Lange and Rahbek (2009) for an overview. However, a latent state model is too complex and difficult to interpret if what is
observed is not two different dynamical systems, but is really the same dynamical system that just has the property that it
can be in two different regimes. A multi-modal diffusion has local attraction points corresponding to its regimes and moves
between them in a continuous and random way. Apart from the conceptual advantage and the simpler model, other
advantages of a multi-modal diffusion over two separate models are that the stationary marginal density in a succinct way
contains important information about the regimes: the relative size of the modes reflect the time spent in each mode, and
the peakedness and broadness of the modes reflect the volatility of the regimes. Moreover, explicit formulae for mean
passage times allow for precise calculation of the time spent in each regime and the probability of switching from one
regime to another.

The paper is organized as follows: Section 2 is devoted to the construction of our multi-modal diffusion models.
We investigate the properties of these models and contrast them to other existing bimodal diffusions, the double-well
potential models in particular. In Section 3 we discuss inference for the new class of bimodal diffusions emphasizing
approximate likelihood inference based on martingale estimating functions. Inference is further discussed when the
bimodal diffusion is observed with measurement error. In Section 4 we apply a bimodal diffusion model to molecular
dynamics data in the form of a reaction coordinate of the small Trp-zipper protein. Upon adjusting for measurement error
we obtain a good fit to data and estimated folding rates that are realistic for this kind of protein. Section 5 concludes.

2. Multi-modal diffusions by transformation

In order to model a bimodal (multi-modal) diffusion, we initially consider a stationary diffusion of general form,
dX = p(Xr) dt+a(X;) dBy, )

where {B;} is a Wiener process, and we assume that the coefficients are sufficiently regular to ensure that a unique weak
solution exists for any given initial condition. In principle {X;} could be any diffusion, but we aim to construct bimodal
diffusions for which statistical inference is relatively easy, so we are interested in cases where the diffusion {X;} is
analytically tractable. This is for instance the case if {X;} is an ergodic Pearson diffusion as considered by Forman and
Serensen (2008), see in addition Kolmogorov (1931) and Wong (1964) for early accounts on these processes.

Recall that a stationary solution {X;} to the stochastic differential equation exists if
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