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a b s t r a c t

Statistical inference about a partial linear model includes two parts, one linear and the
other nonparametric. The double smoothing method proposed by He and Huang (2009) is
a progressive local smoothing method for nonparametric curve estimation. In this paper,
we discuss its extension to partial linear models, accompanied with difference-based
estimation method for the linear part. Asymptotic theory of the proposed method is
developed. The results of simulation studies and real data examples demonstrate that our
approach is effective even for data with moderate sample sizes.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

As a very useful compromising tool between nonparametric and parametric regression, semiparametric regression is
getting more popular recently. In a semiparametric regression model there are two components; one is parametric and the
other is nonparametric. Both the modeling flexibility and the simplicity in implementation make these models very
attractive. One of the most popular models, partial linear model, plays an important role in various applications (Engle et al.,
1986; Green et al., 1985). The linear form assumed in the parametric part makes it simple to interpret while the flexibility of
the model still holds by the nonparametric part. Much statistical literature focused on the inference about the parametric
part for partial linear models, treating the nonparametric part as an infinite-dimensional nuisance parameter (Chen, 1988;
Bhattacharya and Zhao, 1997; Rice, 1986; Heckman, 1986; Robinson, 1988). However, the nonparametric part also plays an
important role in data analysis, such as the relationship between the logarithm of plasma beta-carotene level and age of
person in nutriology (see the second example in Section 5 below for details). Appropriate estimations of the nonparametric
part can reveal the internal relationship between the response and explanatory variables (Marra and Radice, 2010).

In most of the inference procedures of a partial linear model, the parametric part and nonparametric part are jointly
considered and various nonparametric methods are applied. The penalized least squares methods were considered by Engle
et al. (1986), Heckman (1986), and Wahba (1984). Following the kernel type method (Robinson, 1988; Speckman, 1988),
other smoothing methods, such as the local polynomial method (Hamilton and Truong, 1997; Aneiros-Pérez and Vilar-
Fernández, 2008), and the wavelet approach (Chang and Qu, 2004) are also applied to partial linear models. Efficiency and
consistency of these estimations for the partial linear model were systematically discussed by Härdle et al. (2000).
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Yatchew (1997) applied the simple difference-based method to estimate the parametric component of partial linear
models. Under some mild conditions on the nonparametric smoothing function, the least squares estimation for the
parametric part was obtained directly. Wang et al. (2011) further discussed the efficiency of the difference-based estimation
method for partial linear models. Zhao and You (2011) discussed difference based estimation for the partially linear
regression model with measurement errors. The estimation of the parametric part provides us another approach to estimate
the nonparametric part using available nonparametric methods.

Recently, He and Huang (2009) suggested a double smoothing local linear (DSLL) method in univariate nonparametric
regressions to reduce the bias of the estimation. In this paper, we extend the DSLL method to partial linear models, and
show that, asymptotically, the DSLL estimates for partial linear models have similar advantages over their local linear (LL)
counterpart as in the univariate nonparametric regression cases. Furthermore, the estimations of the parametric part of the
partial linear models have little effect on the performance of the DSLL estimations of the nonparametric part; the DSLL
method based on the

ffiffiffi
n

p �consistent difference-based estimate is asymptotically equivalent to the DSLL estimate when the
parameters of the linear part are known. The above asymptotic results are also supported by simulation studies under small
to moderate sample sizes. In the rest of the paper, the difference-based estimation method for partial linear models is briefly
reviewed and the DSLL method is generalized to partial linear models in Section 2. The main result about the DSLL method
for partial linear regression models is presented in Section 3. Simulation studies are carried out in Section 4 and the
methods are applied to two real data sets in Section 5. In Section 6, we discuss some inference problems for further study.

2. Statistical inference of the partial linear model

2.1. Partial linear model

Let Y be the response variable of interest, and (U,X) the explanatory variable vectors such that U is a scalar and X a p-
dimensional vector. A partial linear model has the form

Y ¼ αðUÞþXTβþɛ; ð1Þ
where αð�Þ is an unknown nonparametric smooth function, and ɛ, independent with U and X, is a random error with mean zero and
finite variance s2ɛ . Thus, a partial linear model can be thought as an extension of the multiple linear regression model. The
nonparametric part αðUÞ provides the flexibility to accommodate the nonlinear nature. A two-step procedure can be applied for
inference; the parameter β is first estimated via the difference-based method and then αð�Þ is estimated using smoothing methods.
For the convenience of the readers we briefly review the difference-based method (for details see Yatchew,1997;Wang et al., 2011).

2.2. Difference-based estimate of β

Yatchew (1997) applied the difference-based method to the partial linear model and showed that the estimator of
parameter is

ffiffiffi
n

p �consistent if the dimension of covariate in the unknown smoothing function is at most 3.
Let ðYi;Ui;X

T
i Þi ¼ 1;…;n be an i.i.d. sample, and ðYn

i ;U
n

i ;X
nT
i Þi ¼ 1;…;n, the ordered sample based on Ui, i.e., U

n

1r⋯rUn

n. Let
d0;…; dmðmZ1Þ be a sequence of difference coefficients satisfying

∑
m

j ¼ 0
dj ¼ 0; ∑

m

j ¼ 0
d2j ¼ 1: ð2Þ

The corresponding difference sequences in X and Y are defined as

ΔX¼ ∑
m

j ¼ 0
djX

nT
tþm� j

 !
1r trn�m

and ΔY¼ ∑
m

j ¼ 0
djY

n

tþm� j

 !
1r trn�m

;

respectively. The basic idea of the difference-based method is that ΔY¼ΔXTβþΔαðUÞþΔɛ, where ΔαðUÞ and Δɛ are defined
similar to ΔY and ΔX. The difference in αðUÞ, ΔαðUÞ, can be integrated with the difference error Δɛ, and β can be estimated by
the regression of ΔY on ΔX. Therefore, the difference-based estimation of β isbβm ¼ ðΔXTΔXÞ�1ΔXTΔY:

The estimate bβm is asymptotic normal and
ffiffiffi
n

p �consistent, and asymptotic efficiency can be achieved under some mild regularity
assumptions. More precisely, let gðu; xÞ be the joint probability density function of U and X and f(u) be the probability density
function of U. Without loss of generality, we may assume that U has a compact support DU � R1. For example, we can always
simply truncate U on the region of interest. We need the following assumption, similar to that of Yatchew (1997).

Assumption 1.

(a) The first derivative of the nonparametric function αð�Þ is bounded on DU.
(b) f(u) is bounded away from 0 on its compact support DU.
(c) The optimal difference d1;…; dm are selected as in Hall et al. (1990).
(d) X has a nondegenerate conditional distribution given U and Σn

X ¼ EðCovðXjUÞÞ exists.
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