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a b s t r a c t

Missing data in longitudinal studies can create enormous challenges in data analysis

when coupled with the positive-definiteness constraint on a covariance matrix. For

complete balanced data, the Cholesky decomposition of a covariance matrix makes it

possible to remove the positive-definiteness constraint and use a generalized linear

model setup to jointly model the mean and covariance using covariates (Pourahmadi,

2000). However, this approach may not be directly applicable when the longitudinal

data are unbalanced, as coherent regression models for the dependence across all times

and subjects may not exist. Within the existing generalized linear model framework, we

show how to overcome this and other challenges by embedding the covariance matrix

of the observed data for each subject in a larger covariance matrix and employing the

familiar EM algorithm to compute the maximum likelihood estimates of the parameters

and their standard errors. We illustrate and assess the methodology using real data sets

and simulations.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

To cope with the positive-definiteness constraint, the modified Cholesky decomposition has been introduced as a tool
for reparameterization of the covariance matrix in longitudinal studies (Pourahmadi, 1999, 2000). The entries of the lower
triangular matrix and the diagonal matrix from the modified Cholesky decomposition have interpretations as auto-
regressive coefficients and prediction variances when regressing a measurement on its predecessors. This unconstrained
reparameterization and its statistical interpretability makes it easy to incorporate covariates in covariance modeling and to
cast the joint modeling of mean and covariance into the generalized linear model framework. The methodology has proved
to be useful in recent literature; see for example, Pourahmadi and Daniels (2002), Pan and MacKenzie (2003), Ye and Pan
(2006), Daniels (2006), Huang et al. (2006), Levina et al. (2008), Yap et al. (2009), and Lin and Wang (2009).

However, it encounters the problem of incoherency of the (auto)regression coefficients and innovation variances across
the subjects when the longitudinal data are unbalanced and covariates are used. Unfortunately, this problem has not been
noticed or pointed out explicitly in the literature. Although covariates have been used in Pourahmadi (1999) for modeling
balanced data, the coherency consideration suggests that care must be taken when the data are unbalanced. In fact, the
formulations in Pourahmadi and Daniels (2002) and the subsequent papers are suitable only when the missing data
are dropouts, where for a subject the missingness occurs from certain time point to the end of the study. In general, as we
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illustrate by an example in Section 2, a coherent system of regressions based on the modified Cholesky decomposition may
not exist if there are intermittent missing values.

In this paper, we propose to handle both dropouts and intermittent missing values using an incomplete data model and
the EM algorithm (Dempster et al., 1977; Jennrich and Schluchter, 1986) when the data are missing at random (Rubin,
1976). Our incomplete data framework assumes that a fixed number of measurements are to be collected at a common set
of times for all subjects with a common ‘‘grand covariance matrix’’ S, but since not all responses are observed for all
subjects, a generic subject i’s measurements will have a covariance matrix Si which is a principal minor of S. Since the
covariance model for S is built from measurements at a common set of times, the incoherency problem is completely
avoided. A ‘‘generalized EM algorithm’’ (in which we try to increase the objective function in the ‘‘M’’ step rather than

maximizing it) is then developed to deal with the missing data in the context of the modified Cholesky decomposition and
to compute the maximum likelihood estimates.

2. The incoherency problem in incomplete longitudinal data

Assume that the vector of repeated measures yi of subject i collected at completely irregular times tij, j¼ 1, . . . ,mi, follows
a zero mean multivariate normal distribution with covariance matrix Si. The modified Cholesky decomposition gives
TiSiT

0
i ¼Di, where Ti is a lower triangular matrix whose below-diagonal entries are the negatives of the autoregressive

coefficients, fitj, in ŷit ¼
Pt�1

j ¼ 1 fitjyij, and Di is a diagonal matrix whose diagonal entries s2
it ’s are the innovation variances of

the autoregressions. A generalized linear model for Si can be built for each subject by relating the autoregressive parameters
fitj and the log innovation variances log s2

it to some covariates as

fitj ¼ z0itjgi and logðs2
itÞ ¼ u0itli, 1r jrt�1, 1rtrmi, ð1Þ

where zitj and uit are covariates for covariance matrices, and gi 2 Rq
i and li 2 Rr

i are the corresponding regression parameters
which have different dimensions for different subjects. The covariates in (1) are usually of the form

zitj ¼ ð1,ðtit�tijÞ,ðtit�tijÞ
2, . . . ,ðtit�tijÞ

q�1
Þ
0,

uit ¼ ð1,tit ,t
2
it, . . . ,t

r�1
it Þ: ð2Þ

This general form gives rise to the following two statistical problems:

� Estimation of gi and li based on a single vector yi is impossible unless mi is large or a sort of stationarity assumption is
imposed. In other words, one cannot borrow strength from other subjects.
� Even if these parameters are assumed the same for all subjects so that one may borrow strength from other subjects,

there remains a problem of interpretation or incoherency of the parameters.

The next example shows the incoherency problem, when the data are unbalanced. It seems Pourahmadi and Daniels
(2002), Eq. (4), is the first place where this problem was encountered and not addressed properly. Another source is Lin and
Wang (2009) and the references therein. For ease of reference we call such a method the naive method in what follows.

Example. Let us consider the simple model, yit ¼fyit�1þeit , for t¼ 2;3,4 with yi1 ¼ ei1 and ei �N4ð0,IÞ. Thus for a
completely observed subject D¼ I4 with the following structures for T and S:

T ¼

1 0 0 0

�f 1 0 0

0 �f 1 0

0 0 �f 1

0BBBB@
1CCCCA, S¼

1 f f2 f3

f 1þf2 f2
þf3 f3

þf4

f2 f2
þf3 1þf2

þf4 fþf3
þf5

f3 f3
þf4 fþf3

þf5 1þf2
þf4
þf6

0BBBBB@

1CCCCCA:

Now, consider two subjects where Subject 1 has three measurements at times 1, 2, 4 and Subject 2 has measurements at
times 1, 3, 4. It is straightforward to obtain S1 by deletion of the third row and column of S, similarly S2 is obtained by
deletion of the second row and column of the S. Now by using the modified Cholesky decomposition, one can obtain Ti and
Di for i¼1,2 as follows:

T1 ¼

1 0 0

�f 1 0

0 �f2 1

0B@
1CA, D1 ¼

1 0 0

0 1 0

0 0 1þf2

0B@
1CA,

T2 ¼

1 0 0

�f2 1 0

0 �f 1

0B@
1CA, D2 ¼

1 0 0

0 1þf2 0

0 0 1

0B@
1CA:

Although both fi21 can be interpreted as the coefficient when regressing the second measurement on the first, they
actually take different values: For Subject 1, the measurement at time 2 is regressed on that at time 1, but for Subject 2, the
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