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the mixture model method. We show that the classification rules of both methods are
linear, but the slopes of the two classification lines change in the opposite direction as
Elongation the component distributions become more elongated. The classification performance of
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1. Introduction

Cluster analysis is a common unsupervised learning technique for statistical data analysis, which seeks to group objects
of a similar kind into separate categories. It is widely used in different fields, including social sciences, database marketing
and bioinformatics. Cluster analysis encompasses a number of heuristic and model-based methods, including the K-means
algorithm (MacQueen, 1967) and the normal mixture model (MM) method (Day, 1969; Titterington et al., 1985).

A general question facing researchers and practitioners is which method to use in practice. The K-means algorithm is a
nonparametric approach that aims to classify objects into K mutually exclusive clusters by minimizing the expected
squared distance of an object from its nearest center. It is generally known to be a fast algorithm, but the main limitation is
its convergence reliability. Everitt (1993, p. 98) showed by an example that the K-means algorithm can have extremely
poor performance on a two-component mixture model if the variables are highly correlated, and this phenomenon has
been quoted in many places as a practical warning. For example, Cheung (2003) mentions that the K-means algorithm
assumes that the data clusters are ball-shaped, and works poorly for elliptical clusters. Various efforts have been made to
address the elongation problem. Art et al. (1982) proposed an iterative algorithm for estimating the shapes of the
component distributions and suggested the Mahalanobis distance as the appropriate measure. Other distance metrics, such
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as the L1 distance and the sample correlation between objects, can also be used for the K-means algorithm. These variants
of K-means algorithm have been implemented in commercial software such as Matlab and SAS. Considering the fact that
the standard K-means algorithm is the most popular clustering tool, and its naive use can, in some cases, lead to
nonsensical results, we would like to analytically study its performance as a function of component cluster elongation.

The normal MM method is another approach to cluster analysis, where each cluster is modeled by a component
distribution from the Gaussian distribution family. The expectation-maximization (EM) algorithm of Dempster et al.
(1977) is often used to estimate the associated parameters. The EM algorithm maximizes the incomplete log-likelihood
function through maximizing a sequence of complete log-likelihood functions. When the covariance matrices Xy
(1 < k < K) of different clusters are equal to a2, it reduces to the K-means algorithm as ¢2 — 0 (Hastie et al., 2002; Steinley,
2006); however, the mixture component means do not model the cluster means from the K-means algorithm in general.
The reliability of the MM method on normal mixture data is a function of the sample size and can degenerate drastically as
the sample size becomes small due to parameter estimation errors; even though in theory the MM method has a potential
to provide the best classification performance.

Qiu and Tamhane (2007) provided a relatively thorough comparison of K-means algorithm and the MM method based
on data generated from a two-component univariate normal mixture model. The comparison was based on a rigorous
treatment of the asymptotic behavior of the two clustering methods. Simulation results were given to compare the two
methods for a range of sample sizes. In this paper, we extend the study to the bivariate homoscedastic case where the
component clusters have common covariance matrices. We plan to provide a theoretical justification of why the K-means
algorithm performs poorly on elliptical data. Its classification performances are compared to those of the MM method
under various conditions.

The outline of the paper is as follows. In Section 2, we formulate the problem and define the notations. We also translate
the homoscedastic normal mixture model into a mixture model of clusters with independent variables. In Section 3, we
review the K-means algorithm and the MM method. In Section 4, we examine the behavior of the classification rules as a
function of the elongation measure of the component clusters. The examination was conducted under asymptotic
assumption where the sample size n— oo. In Section 5, a simulation study with finite sample sizes are discussed to verify
the analytical results for both methods, which is followed by a discussion and future research directions in Section 6.

2. Homeoscedastic bivariate normal mixture model

Let us begin with a graphic representation of the homoscedastic bivariate normal mixture model, consisting of two
component clusters with a common covariance structure. In Fig. 1, the two plotted variables, Y; and Y, are correlated in both
clusters. Suppose Y = (Y1, Y,)' follows a bivariate (more generally, a multivariate) normal distribution with covariance matrix
Q in each component, then there exists a unitary matrix P, whose rows are orthonormal eigenvectors of €, such that
Y =PQP is a diagonal matrix. In other words, even if Y; and Y, are correlated, they can always be transformed to
independent random variables X; and X, with unequal variances by X = (X;,X,) = PY. The classification performances of the
K-means algorithm and the MM method are invariant to rotations and scaler transformations. Thus, the problem of studying
the effect of correlation can be transformed to that of the effect of the ratio o, /01, where o2 and o3 are the variances of the
two independent random variables. We define the ratio ¢ = 0, /0, as elongation which measures the deviation of the contour
line of the bivariate distribution from the ball shape. The following proposition shows that the absolute correlation, |p],
between the correlated variables in each component cluster increases as the elongation, ¢, increases.

Proposition 1. Define X; and X, as two independent random variables with common mean 0 and variances ¢3 and o3
(03 > 02). Let (Y1, Y2) be an orthogonal one-to-one transformation of (X1,X) given by

Yi| [cosy sinv][X 21
Y, _{—Sinv cosv} Xy | 2.1

Fig. 1. Simulated data from a mixture of two bivariate normal distributions.



Download English Version:

https://daneshyari.com/en/article/1149185

Download Persian Version:

https://daneshyari.com/article/1149185

Daneshyari.com


https://daneshyari.com/en/article/1149185
https://daneshyari.com/article/1149185
https://daneshyari.com

