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a b s t r a c t

The analysis of crossover designs assuming i.i.d. errors leads to biased variance

estimates whenever the true covariance structure is not spherical. As a result, the OLS

F-test for the equality of the direct effects of the treatments is not valid. Bellavance et al.

[1996. Biometrics 52, 607–612] use simulations to show that a modified F-test based on

an estimate of the within subjects covariance matrix allows for nearly unbiased tests.

Kunert and Utzig [1993. JRSS B 55, 919–927] propose an alternative test that does not

need an estimate of the covariance matrix. Instead, they correct the F-statistic by

multiplying by a constant based on the worst-case scenario. However, for designs with

more than three observations per subject, Kunert and Utzig (1993) only give a rough

upper bound for the worst-case variance bias. This may lead to overly conservative

tests. In this paper we derive an exact upper limit for the variance bias due to carry-over

for an arbitrary number of observations per subject. The result holds for a certain class

of highly efficient balanced crossover designs.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

In a crossover design each subject receives multiple treatments. Data from crossover designs are often analyzed with a
linear model that includes direct treatment effects, carry-over effects, subject effects and order effects. If we assume i.i.d.
errors, in matrix notation we have the model

Y ¼ 1npmþUaþPpþTsþFqþe; EðeÞ ¼ 0; CovðeÞ ¼ s2Inp: ð1Þ

Here, Y ¼ ðy11; y12; . . . ; ynpÞ
T is the vector of observations and yij the observation on subject i at period j, i=1,y,n, j=1,y,p.

There are a general mean, m, fixed effects for subjects, a¼ ða1; . . . ;anÞ
T and fixed effects for periods (order effects)

p¼ ðp1; . . . ;ppÞ
T . U ¼ In � 1p and P ¼ 1n � Ip denote the corresponding design matrices. The vectors of direct and residual

(carry-over) treatment effects are given by s¼ ðs1; . . . ; stÞ
T and q¼ ðq1; . . . ;qtÞ

T , respectively. We assume that there is no
residual effect in period 1. We denote the corresponding design matrices for direct and carry-over effects by T and F. The
vector of errors, e¼ ðe11; . . . ; enpÞ

T , follows a distribution with finite second moments. The errors are i.i.d. with variance
s240. If we allow for correlated errors, we get

Y ¼ 1npmþUaþPpþTsþFqþe; EðeÞ ¼ 0; CovðeÞ ¼R¼ In � S: ð2Þ
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Here, we assume that the within subjects covariance matrix S 2 Rp�p is the same for all subjects. So (1) is a special case of
(2) where S ¼ s2Ip.

It is well known that the analysis of crossover designs assuming i.i.d. errors leads to biased variance estimates whenever
the true covariance structure is not spherical. As a result of this, ordinary least squares (OLS) F-tests for the equality of the
direct effects of the treatments are no longer valid. If S were known, GLS estimates could be used. Bellavance et al. (1996)
compare several alternatives to the OLS F-test based on estimates of S. Along with Correa and Bellavance (2001) and Chen
and Wei (2003) they conclude from simulation studies that a modified F-test based on an approximation by Box (1954)
yields nearly unbiased and reasonably powerful tests for treatment effects, see also Jones and Kenward (2003, p. 262).

For studies with few subjects the estimates of S may be unreliable, thus leading to biased tests. Therefore Kunert and
Utzig (1993) do not estimate S. They analyze the worst-case performance of treatment estimates under (1) when in fact (2)
holds, and then correct the corresponding test statistics for the worst-case bias. This is achieved by dividing the F-statistic
by the maximum of the ratio of the variance of a treatment contrast in (2) and the expected value of the estimated
variance, where the variance estimate is computed assuming (1).

However, for designs with more than three observations per subject Kunert and Utzig (1993) do not give a sharp upper
bound for the worst-case scenario. This leads to overly conservative tests whenever the covariance matrix is close to
spherical.

The next section details this approach and introduces some useful notation for computing the worst-case scenario. In
Section 3 we derive an exact upper limit for the variance bias due to carry-over for an arbitrary number of observations per
subject.

2. The upper bound for the variance quotient by Kunert and Utzig (1993)

A crossover design is a block design d with t treatments and n subjects as blocks. Each block is of length p. Let Lt;n;p be
the set of such designs. As in Kunert and Utzig (1993) we will restrict our attention to a subset L�t;n;p of designs suitable for
analysis under (1). Also, as the above authors point out, it suffices to assume p42, since the variance estimates are
unbiased for p=2 regardless of S.

Definition 1. A block design d is called totally balanced, if it fulfills the following conditions.

(i) d is a balanced block design with tZp, i.e. the number of subjects that receive treatments i and j is the same for all pairs
of treatments iaj and each treatment is administered to each subject at most once.

(ii) The number of subjects that receive treatments i and j during the first p�1 periods is the same for all iaj.
(iii) d is uniform on the periods, i.e. each treatment appears in each period exactly n/t times.
(iv) d is neighbor balanced, i.e. each treatment is preceded by every other treatment equally often but is never preceded by

itself.
(v) The number of subjects that receive treatment i during the first p�1 periods and that receive treatment j in the last

period is the same for all iaj.

Let L�t;n;p be the set of totally balanced designs for given t,n,p.

Note that a totally balanced design does not exist for every t,n,p. Examples of totally balanced designs include the designs
proposed by Patterson (1952) and Williams (1949).

In (1) we are interested in estimating contrasts c¼ ‘Ts of direct treatment effects, where ‘¼ ð‘1; . . . ; ‘tÞ
T
2 Rt andP

i ‘i ¼ 0. Without loss of generality we restrict our attention to standardized contrasts, i.e.
P

i ‘
2
i ¼ 1. Let ĉ ¼ ‘T ŝ be an OLS

estimate of c¼ ‘Ts under (1).
Let oA ¼oðAÞ ¼ AðAT AÞ�AT be the projection matrix on the column span of A and o?A ¼o?ðAÞ ¼ I�oðAÞ. Here, A� is any

generalized inverse of A. We denote a partitioned matrix by A¼ ½A1; . . . ;An� and define Q n ¼o?ð1nÞ ¼ In�ð1=nÞ1n1T
n , the

centering matrix of rank n�1.
If d 2 L�t;n;p, then we have information matrices

Cd ¼ TTo?½U;P;F�T ¼ cdQ t ;

TTo?½U;P�F ¼ cd12Q t ;

FTo?½U;P�F ¼ cd22Q t ;

where

cd ¼
nðp�1Þ

t�1
1�

t

pðpt�t�1Þ

� �
;

cd12 ¼
�nðp�1Þ

pðt�1Þ
;
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