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a b s t r a c t

Although a wide list of classes of space–time covariance functions is now available,
selecting an appropriate class of models for a variable under study is still difficult and it
represents a priority problem with respect to the choice of a particular model of a
specified class. Then, knowing the characteristics of various classes of covariances, and
their auxiliary functions, and matching those with the characteristics of the empirical
space–time covariance surface might be helpful in the selection of a suitable class. In this
paper some characteristics, such as behavior at the origin, asymptotic behavior, non-
separability and anisotropy aspects, are studied for some well known classes of covariance
models of stationary space–time random fields. Moreover, some important issues related
to modeling choices are described and a case study is presented.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, some systematic contributions on space-time geostatistical analysis can be found in the literature (Cressie and
Wikle, 2011; Christakos, 2012) and various classes of space–time covariance functions are available. The metric class of models (or
geometric anisotropymodels), where the anisotropy factors between the space and time axes are introduced, has represented one
of the first attempts to construct parametric families of space–time covariance functions (Dimitrakopoulos and Luo, 1994).
Essentially, some other space–time covariance models have been built by assuming separability between space and time, such as
the summodel (Rouhani andHall,1989) and the productmodel. The latter, whose strict positive definiteness is explored in De Iaco
et al. (2011b), is known in twoversions: the one obtained by the product of purely spatial and purely temporal covariance functions
(Posa, 1993) and the other one where the global variance of the random field is multiplied by a purely spatial correlation function
and a purely temporal correlation function (Haas, 1995). Then, the above classes have been often used as a starting point for
deriving families of nonseparable space–time covariance models through appropriate mixture procedures, as also shown in Stein
(1986), De Iaco et al. (2001, 2002) and Ma (2002, 2003). In addition, various classes of nonseparable space–time covariances have
been constructed through different approaches by Cressie and Huang (1999), Gneiting (2002), Kolovos et al. (2004), Stein (2005),
Ma (2005), Porcu andMateu (2007), Porcu et al. (2008), Rodrigues and Diggle (2010), among others.Moreover, other contributions
deal with nonseparable anisotropic space–time covariance models (Fernandez-Casal et al., 2003; Stein, 2005; Porcu et al., 2006)
and nonseparable asymmetric space–time covariance models (Porcu et al., 2006; Gneiting et al., 2007; Jun and Stein, 2007). The
selection of an appropriate class of models might be based on its geometric features and theoretical properties. Indeed, one might
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look for the class of models whose properties are consistent with respect to the characteristics of the empirical space–time
covariance surface estimated from the data. For this reason, analyzing the following questions is essential: (a) how do the spatial
and/or the temporal marginals behave at the origin? (b) does the space–time data set present different variability along space and
time? (c)which typeof nonseparability is highlightedby thedata? (d)which kindof spatial anisotropy is required by thedata?Note
that the following analytical study regards somewell known classes of models, not just some specific models. Hence, the analyzed
features allow different classes to be characterized and properly selected according to the data, even before defining the specific
model suitable to describe the correlation structure of the variable under study.

In this paper, the theoretical framework of some well-known classes of fully symmetric covariance functions for
stationary space–time random fields (STRF) is given in Section 2 and some characteristics of the selected classes as well as
some examples are discussed in Section 3. Finally, in Section 4, some aspects related to the modeling choices are presented.
In Section 5, the use of some results is illustrated through a case study regarding an environmental data set.

2. Classes of space–time covariances

Let fZðs; tÞ; ðs; tÞ∈D� Tg be a second order stationary STRF, where DDRd is the spatial domain and TDR the temporal
one, with zero expected value and covariance CST ðhs;htÞ ¼ E½Zðs; tÞZðs′; t′Þ�, with hs ¼ ðs−s′Þ and ht ¼ ðt−t′Þ. In modeling space–
time covariance functions, one should ensure that the model is positive definite. The property of positive definiteness is a
necessary and sufficient condition for a function to be a covariance (Yaglom, 1987; De Iaco et al., 2011b), which, under
second order stationarity assumption, implies that

∑
n

i ¼ 1
∑
n

j ¼ 1
λiλjCST ðsi−sj; ti−tjÞ≥0; ð1Þ

for any n∈N and any choice of ðs1; t1Þ;…; ðsn; tnÞ∈Rd � R and λ1;…; λn∈R. If the quadratic form (1) is strictly positive for any
choice of distinct points ðs1; t1Þ;…; ðsn; tnÞ∈Rd � R and λ1;…; λn∈R not all zero, then CST is strictly positive definite. Strict
positive definiteness is essential for spatial and spatio-temporal prediction, since it ensures the existence of a unique
solution of the kriging system.

Various assumptions are often made for covariance functions of stationary STRF, such as full symmetry and separability,
which can be tested by using different methodologies (Mitchell et al., 2005; Fuentes, 2006; Li et al., 2007). Although a wide
dissertation on the smoothness of some covariance functions has been already furnished by Stein (2005) and some
characteristics for the Gneiting class have been proposed by Zastavnyi and Porcu (2011), this paper focuses on other
interesting features of the following classes of space–time stationary covariance models:

� Cressie–Huang class of models (Cressie and Huang, 1999)

CST ðhs;htÞ ¼
Z
Rd
eih

T
s ωρðht ;ωÞkðωÞ dω; ð2Þ

where ρð�;ωÞ is a continuous integrable correlation function for all ω∈Rd; and kð � Þ is a positive function, which is
integrable on Rd;

� Gneiting class of models (Gneiting, 2002)

CST ðhs;htÞ ¼
s2

½ψðh2t Þ�d=2
ϕ

‖hs‖2

ψðh2t Þ

 !
; ð3Þ

where ϕðtÞ; t≥0, is a completely monotone function and ψðtÞ; t≥0 is a positive function with completely monotone
derivative;

� the class of integrated models (De Iaco et al., 2002)

CST ðhs;htÞ ¼
Z
V
½k1CSðhs; xÞCT ðht ; xÞ þ k2CSðhs; xÞ þ k3CT ðht ; xÞ� dμðxÞ; ð4Þ

where μðxÞ is a positive measure on UDR, CSðhs; xÞ and CT ðht ; xÞ are covariance functions defined on DDRd and TDR,
respectively, for all x∈VDU, k140, k2; k3≥0. If k2 ¼ k3 ¼ 0, the above class of models is called integrated product models,
otherwise it is called integrated product–sum models.

Even though the above selection is not supposed to be exhaustive, the proposed classes can describe most of the
applications, because of their complementary properties as well as their similarities and differences, specified hereafter.

� These models are nonseparable, but they have been built using different methods and covariance properties; hence, they
have their own characteristics, in terms of the possibility of identifying the space–time interaction parameters and the
connection with the corresponding marginals;

� each of the above mentioned classes is not a sub-class of the others. For example, the integrated product models, which
are generally non-integrable, cannot be obtained in general from the Cressie–Huang representation (Cressie and Huang,
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