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a b s t r a c t

The procedure suggested by DerSimonian and Laird is the simplest and most commonly

used method for fitting the random effects model for meta-analysis. Here it is shown

that, unless all studies are of similar size, this is inefficient when estimating the

between-study variance, but is remarkably efficient when estimating the treatment

effect. If formal inference is restricted to statements about the treatment effect, and the

sample size is large, there is little point in implementing more sophisticated

methodology. However, it is further demonstrated, for a simple special case, that use

of the profile likelihood results in actual coverage probabilities for 95% confidence

intervals that are closer to nominal levels for smaller sample sizes. Alternative methods

for making inferences for the treatment effect may therefore be preferable if the

sample size is small, but the DerSimonian and Laird procedure retains its usefulness for

larger samples.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Meta-analysis—the pooling of separate studies concerned with the same treatment or issue—is frequently used in
medical and other applications. Although some debate concerning random versus fixed effects modelling continues,
the random effects model has become a standard approach. Although the conventional random effects model is easily
implemented, it has often been criticised. First of all, the studies must be large enough to use normal approximations, with
known variances, for the within-study distributions. More recently, methods have been proposed using exact conditional
distributions (van Houwelingen et al., 1993; Taye et al., 2008; Shi and Copas, 2002) and other developments recognise that
the within-study variances are given in the form of estimates and that these are typically functions of the underlying
treatment effect (Böhning et al., 2002; Malzahn et al., 2000). We will assume here, however, that studies are large enough
to justify the standard within-study normal approximations.

The conventional random effects model also makes the assumption that the random effect is normally distributed,
although alternative distributional assumptions have been considered (Lee and Thompson, 2008; Baker and Jackson, 2008).
The naive application of the random effects model has also been questioned due to the suspicion that study results may
have been distorted due to publication and related biases (Baker and Jackson, 2006). Whilst recognising all these issues and
concerns, we will assume here that the random effects model is appropriate and hence that all issues relate to which
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estimation and related procedures to use. In particular, a now standard method originally proposed by DerSimonian and
Laird (1986) is widely used, although this idea has more recently been extended (DerSimonian and Kacker, 2007).
The popularity of this procedure is no doubt partly due to its relative simplicity. The DerSimonian and Laird procedure also
has the merit of not requiring the assumption of normality for the random effect, an assumption that is sometimes
questioned (Hardy and Thompson, 1998). Hence the procedure is ‘valid approximately in a distribution-free context when
there are many studies’ (Higgins et al., 2009). This statement does not reassure us that the DerSimonian and Laird
procedure is effective compared to the alternatives, however.

The rest of the paper is set out as follows. In Section 2, the random effects model is described and we also provide a
proof that estimates of treatment effect are unbiased under the assumptions of the model. In Section 3 the asymptotic
(large number of studies) efficiency of the DerSimonian and Laird estimates is investigated and the small sample case is
considered in Section 4. In Section 5, an investigation into using the profile likelihood suggests that this provides more
suitable coverage probabilities of confidence intervals when the sample size is modest and we conclude with a discussion
in Section 6.

2. The random effects model

The conventional fixed and random effects models (DerSimonian and Laird, 1986; Biggerstaff and Tweedie, 1997;
Jackson, 2009; Hardy and Thompson, 1996) initially assume that the estimate of treatment effect from the i th study,
Yi, is distributed as Yijmi�Nðmi;s2

i Þ, where mi is the true underlying treatment effect of the i th study and s2
i is the

corresponding within-study variance. The variance s2
i is unknown but is replaced by a consistent estimate in practice. The

conventional random effects model further assumes that mi�Nðm; t2Þ, where m and t2 denote the overall treatment effect
and between-study variance, respectively, and that the studies are independent. This provides the marginal distributions
Yi�Nðm;s2

i þ t
2Þ.

2.1. The standard procedure

The usual procedure begins by estimating t2. Once t̂2 has been evaluated, irrespective of how this has been obtained,
the standard inference for m is straightforward, as t̂2 is effectively used or ‘plugged in’ as the true value. The simplest and
most commonly used estimate of t2 is the DerSimonian and Laird (1986) estimate. This uses the Q statistic,

Q ¼
Xn

i¼1

wiðyi � yÞ2;

where wi ¼ s�2
i , y ¼

Pn
i¼1 wiyi=

Pn
i¼1 wi and n denotes the number of studies. Under the assumptions of the random effects

model it can be shown that the expectation of Q is

E½Q � ¼ ðn� 1Þ þ S1 �
S2

S1

� �
t2

where Sr ¼
Pn

i¼1 wr
i , which provides the DerSimonian and Laird estimate

t̂2
DL ¼ max 0;

Q � ðn� 1Þ

S1 �
S2

S1

0
BB@

1
CCA: ð1Þ

The corresponding estimate of treatment effect is

m̂DL ¼

Pn
i¼1

yi

s2
i þ t̂

2
DLPn

i¼1

1

s2
i þ t̂

2
DL

: ð2Þ

Confidence intervals are typically obtained using the approximation m̂DL�Nðm; ð
Pn

i¼1 w�i Þ
�1
Þ, where w� ¼ 1=ðs2

i þ t̂
2
DLÞ,

which is justified assuming that the studies are sufficiently large and also that there is at least a moderate number of these.
For example, 100ð1� aÞ% confidence intervals for m are obtained as

m̂DL7Za=2

Xn

i¼1

w�i

 !�1=2

; ð3Þ

where Za=2 denotes the a=2 quantile of the standard normal distribution. Quantiles from the t distribution, with ðn� 1Þ
degrees of freedom, rather than the standard normal, are sometimes used in (3) instead.
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