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a b s t r a c t

In accelerated life testing (ALT), products are exposed to stress levels higher than those

at normal use in order to obtain information in a timely manner. Past work on planning

ALT is predominantly on a single cause of failure. This article presents methods for

planning ALT in the presence of k competing risks. Expressions for computing the Fisher

information matrix are presented when risks are independently distributed lognormal.

Optimal test plans are obtained under criteria that are based on determinants and

maximum likelihood estimation. The proposed method is demonstrated on ALT of

motor insulation.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Accelerated life testing (ALT) exposes products to higher than usual levels of stress, e.g. temperature, voltage, and use
rate, in order to quickly obtain lifetime information. Because of constraints on time and resources, ALT provides an
economic way of obtaining lifetime data. ALT data are often collected to estimate, e.g. by maximum likelihood (ML), a
lifetime quantile at the level that the product is normally used, the failure rate at a given level, or several model
parameters. A test plan that performs well, say, for estimating a life quantile may not perform well in estimating model
parameters. Thus, careful design of ALT is imperative.

Most of the past work on ALT planning assumed that there is a single cause of failure. For example, Nelson and
Kielpinski (1976), Nelson and Meeker (1978), and Nelson (1990) provided expressions for the Fisher information matrix
when failure times were distributed lognormal or Weibull. For these situations, Meeker and Hahn (1985) recommended
the 4:2:1 design (i.e. experimental unit allocations of 4/7, 2/7, 1/7 to three equally spaced increasing levels). Nelson (2005a,
2005b) described the process of planning ALT and the different methods for analyzing ALT data. He also enumerated
relevant journal articles and books on the topic.

A test unit or product may fail due to one of several causes, called competing risks or failure modes. Chapter 7 of Nelson
(1990), Kim and Bai (2002), Craiu and Lee (2005) described situations in engineering when competing risks occurred. For
example, motor insulation may fail because of Turn, Ground and Phase failures. Semiconductor devices may fail because of
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failures of the lead or junction. A race or ball failure causes ball bearing assemblies to malfunction. There are a number of
articles on the analysis of competing-risk data some of which are reviewed in Bunea and Mazzuchi (2003) and Pascual
(2007, 2008b).

While a significant amount of work has been done on designing ALT for a single failure mode, there is a scant amount of
discussions of ALT designs for 2 or more failure modes. For example, Bai and Chun (1991) described competing risks with
independent exponential distributions and derived optimal step-stress ALT designs. Pascual (2007, 2008a) considered ALT
designs when failure modes were independently distributed Weibull with known and common shape parameters. Pascual
(2008b) studied the more general case when failures modes had different and unknown Weibull shape parameters.
Expressions for the Fisher information matrices were derived in the latter three references.

The Weibull and lognormal distributions are two of the most popular distributions used in statistical analysis of
reliability data. Nelson (1990, p. 63) remarked that when both these distributions are fit to the same data, predictions
under the Weibull distribution tend to be more ‘‘pessimistic at the lower tails’’ than under lognormal. That is, Weibull
estimates of lower quantiles tend to be smaller than those of lognormal’s. Because practitioners are often interested in
lower lifetime quantiles, the choice of the distribution is critical. Also, the expressions for the lognormal Fisher information
are expected to be different from those for Weibull ALT planning in Pascual (2008b). Thus, lognormal test plans are
expected to be different from Pascual’s (2008b) plans.

This article explores the problem of designing ALT when failure modes may be described by independent lognormal
distributions. Section 2 discusses model assumptions and provides corresponding expressions for the likelihood function
for competing-risks data. Section 3 discusses the Arrhenius model that describes lifetime under temperature acceleration.
Sections 4 and 5 provide expressions for the Fisher information matrix and ALT design criteria based upon it. The proposed
methods are applied to designing ALT of Class-B insulation of motors in Section 7. Equivalence theorems for verifying
optimality of designs are presented in Appendix A.

2. Model assumptions and likelihood function for independent lognormal risks

Suppose there are m unique experimental conditions, and let sr represent the r th condition. Assume that test units can
fail due to one of k defined risks and that the actual cause of failure can be identified by conducting an ‘‘autopsy’’ on the
failed unit. In this section, i¼ 1; . . . ; k and r¼ 1; . . . ;m. Let T ðrÞij be the random variable denoting the failure time of a test unit
j due to risk i at condition sr . In the absence of censoring, unit j’s lifetime is T ¼minfT ðrÞ1j ; . . . ; T

ðrÞ
kj g. Assume that TðrÞ1j ; . . . ; T

ðrÞ
kj

are independent. Thus, the life of a test unit is interpreted as that of a series system with k independent components.
Throughout this article log denotes natural logarithm. Assume that T ðrÞij is distributed lognormal, i.e. log½T ðrÞij � is

distributed normal, with location and scale parameters miðsrÞ and si, respectively. Note that the location varies with test
condition sr according to a relationship to be defined later, while the scale does not. Throughout this article, f, F and
F ¼ 1�F denote the probability density function (pdf), cumulative distribution function (cdf), and survival function,
respectively, of the standard normal distribution.

Let nir be the number of units that failed at sr due to risk i. Let tðrÞij be the failure time due to risk i at condition sr for
j¼ 1; . . . ;nir . Let nkþ1;r be the number of right censored lifetimes at sr , and let tðrÞkþ1;j for j¼ 1; . . . ;nkþ1;r denote the
corresponding censoring times. Note that a total of n1rþ � � � þnkrþnkþ1;r units are tested at sr .

Following the approach in David and Moeschberger (1978), it can be shown that the loglikelihood contribution of all
observations at condition sr can be written as

LrðhÞ ¼ �
Xk

i ¼ 1

nirlogð
ffiffiffiffiffiffi
2p
p

siÞ �
1
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Thus, the total loglikelihood is

Lðhjs1; . . . ; smÞ ¼
Xm
r ¼ 1

LrðhÞ;

and the value h¼ ĥ that maximizes L is the maximum likelihood (ML) estimate of h.

3. The Arrhenius model for temperature acceleration

Temperature is a variable commonly accelerated in ALT. The Arrhenius model is based on physical or chemical
properties, and is often used to describe the failure process in this case. For more details, see Chapter 2 of Nelson (1990)
and Chapter 18 of Meeker and Escobar (1998).
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