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Principal points are cluster means for theoretical distributions. A discriminant methodology
based on principal points is introduced. The principal point classification method is useful in
clinical trials where the goal is to distinguish and differentiate between different treatment
effects. Particularly, in psychiatric studies where placebo response rates can be very high, the
principal point classification is illustrated to distinguish specific drug responders from non-
specific placebo responders.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In typical applications of discriminant analysis, there is training data from two or more groups and the goal is to define a
discriminant function to classify new observations to the correct groups. The goal of this paper is a bit different from the classical
discriminant analysis problem. Consider a clinical trial with an active drug arm and a placebo arm. The problem of interest is
to determine which subjects in the active drug arm are responding primarily to a non-specific (placebo) effect rather than the
specific effect of the drug. Because we know which subjects receive the active drug or the placebo, there is no ambiguity as to
which treatment group the subjects belong. However, if a drug-treated subject responds, we do not know to what degree the
subject responded due to the specific (drug) effect and to non-specific (placebo) effects of the treatment. If a placebo treated
subject responds, then we know it must be due to the non-specific effects of the treatment. Outside of clinical experiments in
everyday treatment, patients typically receive the active drug for treatment, not a placebo. Interest lies in classifying drug treated
patients who respond primarily due to specific (drug) effects or to non-specific (placebo) effects, or perhaps a combination of
these two effects.

The problem of distinguishing a placebo response from a drug response in psychiatric illnesses has been of high interest
for clinical research and practice for many years (e.g., see Quitkin et al., 1987; Ross et al., 2002). There is a need to apply
modern statistical methods to address this important problem. One approach to the specific/non-specific treatment effects
problem is to assume that the population consists of distinct latent subgroups of specific responders and non-specific responders.
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For longitudinal studies, a growthmixture model can be postulated (Muthén and Shedden, 1999; James and Sugar, 2003; Elliot et
al., 2005). However, if subjects can experience both specific and non-specific effects ranging continuously from very weak to very
strong, then modeling the outcomes as a growth mixture could erroneously lead investigators to believe real sub-populations
exist. In this paper, an alternative strategy is implemented by determining an optimal partition of the underlying distribution.
The partitioning method is based on determining optimal cluster centers, called principal points (Flury, 1990), for theoretical
distributions.

In the classical normal theory discriminant analysis, observations are assigned to the different groups based on their proximity
to the group means. In longitudinal studies, the outcomes of interest are curves over time. Focusing only on the mean curve
ignores the fact that groups often contain a variety of distinct curve shapes. For instance, in longitudinal clinical studies, there
may exist different types of outcome profile shapes over time corresponding to different types of response to treatment. The
principal point classification method developed in this paper assigns observations based on proximity to principal points which
can be regarded as a generalization of the mean from one to several points. In addition, if we know the outcome distributions
differ for different groups (e.g., different treatment arms in a clinical trial), the principal point classification method developed
below can identify prototypical outcome profiles that can distinguish these differences.

In Section 2 we define principal points and discuss methods of estimating principal points. The principal point classification
method is described in Section 3. Results of a simulation experiment comparing principal point classification with normal theory
discriminant analysis are provided in Section 4. Principal points for linear mixed effect models are described in Section 5.
The principal point classification method is used to distinguish two drug therapies for depression (fluoxetine and imipramine)
in Section 6. Additionally, outcome profiles from specific and non-specific effects are distinguished using the principal point
classification methodology in this section as well. Finally, the paper is concluded in Section 7.

2. Principal points

A classic statistical problem is to determine an optimal partition of a continuous distribution (Cox, 1957; Connor, 1972;
Dalenius, 1950; Dalenius and Gurney, 1951). In signal processing, this problem is referred to vector quantization (e.g., Graf and
Luschgy, 2000). In an optimal stratification of a distribution into k strata, themeans of the k strata are called the k principal points
of the distribution (Flury, 1990).

Let X denote a continuous random vector and consider k points n1, . . . ,nk to be used to represent the distribution of X. We can
define a k-point approximation Y to X as

Y = nj if ‖X − nj‖< ‖X − nh‖ for h� j.

Y is a self-consistent approximation to X if E[X|Y] = Y a.s. (Tarpey and Flury, 1996) in which case the points n1, . . . ,nk are called
k self-consistent points of X (Flury, 1993). Distributions, particularly multivariate distributions, may have more than one set
of k self-consistent points (Tarpey, 1998). If E‖X − Y‖2 � E‖X − Y∗‖2 for any other k-point approximation Y∗ to X, then the
points n1, . . . ,nk are called k-principal points of X. Flury (1993) showed that a set of k principal points of a distribution must be
self-consistent points.

For k = 1, the single principal point corresponds to the mean of the distribution. For k>1, the k principal points provide a
k-point generalization of the mean from one to several points. For a N(�,�2) distribution, the k=2 principal points are �±

√
2/��

(Flury, 1990); for k>2 the principal pointsmust be found numerically. Univariate distributionswith log-concave densities have a
unique set of k self-consistent points for each k and this unique self-consistent approximation must correspond to the k principal
points (Truskin, 1982; Kieffer, 1982; Tarpey, 1994).

2.1. Estimation of principal points

Given a set of observations from a distribution, non-parametric estimators of k principal points can be obtained by using the
cluster means from running the k-means algorithm (e.g., MacQueen, 1967; Hartigan, 1975; Hartigan and Wong, 1979). Under
general circumstances, the cluster means from the k-means algorithm are strongly consistent estimators of the principal points
(Pollard, 1981) and asymptotically normally distributed (Pollard, 1982).More efficientmethods of estimating principal points can
be obtained by utilizing distributional assumptions (e.g., Flury, 1993; Tarpey, 1997). For instance,maximum likelihood estimators
of k = 2 principal points of a univariate normal distribution are x̄ ±

√
2/�s.

For larger values of k and for multidimensional distributions, analytical formulas for principal points do not exist. Tarpey
(2007b) describes a parametric k-means algorithm that provides a computationally intensive but easy to utilize method of
determining maximum likelihood estimators of k principal points, similar to the algorithm of Linde et al. (1980) from the vector
quantization literature using a known distribution. Suppose the data x1, . . . , xn comes from a distribution with density f (x;h).
For the parametric k-means algorithm, first obtain a maximum likelihood estimate ĥ of h. Next, run the k-means algorithm on
a very large data set simulated from f (x; ĥ). Tarpey (2007b) showed that the cluster means obtained by running the k-means
algorithm on the large simulated data set are (approximately) maximum likelihood estimators of the k principal points of f (·;h)
distribution.
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