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We propose a new nonparametric estimator for the density function of multivariate bounded
data. As frequently observed in practice, the variables may be partially bounded (e.g. nonneg-
ative) or completely bounded (e.g. in the unit interval). In addition, the variables may have a
point mass. We reduce the conditions on the underlying density to a minimum by proposing a
nonparametric approach. By using a gamma, a beta, or a local linear kernel (also called bound-
ary kernels), in a product kernel, the suggested estimator becomes simple in implementation
and robust to the well known boundary bias problem. We investigate the mean integrated
squared error properties, including the rate of convergence, uniform strong consistency and
asymptotic normality. We establish consistency of the least squares cross-validation method
to select optimal bandwidth parameters. A detailed simulation study investigates the perfor-
mance of the estimators. Applications using lottery and corporate finance data are provided.

Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

Among multivariate nonparametric density estimators, the standard Gaussian kernel is the most popular. The estimator has
excellent asymptotic properties; see Silverman (1986), Scott (1992), and Wand and Jones (1995) for more details. However, the
estimator does not take into account the potential finite support of the variables. When the support of some variables is bounded,
for example, in the case of nonnegative data, the standard kernel estimator continues to give weight outside the supports. This
causes a bias in the boundary region. The boundary bias problem of the standard kernel is well documented in the univariate
case. An initial solution to the boundary problem is given by Schuster (1985), who proposes the reflection method. Müller
(1991), Lejeune and Sarda (1992), Jones (1993), Jones and Foster (1996), and Cheng et al. (1997) suggest the use of adaptive
and boundary kernels at the edges and a fixed standard kernel in the interior region. Marron and Ruppert (1994) investigate
some transformations before using the standard kernels, and Cowling and Hall (1996) propose a pseudodata method. Recently,
Chen (2000), Bouezmarni and Scaillet (2003), and Bouezmarni and Rombouts (2006) study the gamma kernels for univariate
nonnegative data. For data defined on the unit interval, Chen (1999) proposes to use a beta kernel.

Although the consequences of the boundary problem inmultivariate dimensions aremuchmore severe, because the boundary
region increases with dimension, solutions to the problem are not well investigated. Müller and Stadtmüller (1999) propose
boundary kernels for multivariate data defined on arbitrary support by selecting the kernels that minimize a variational problem.
In fact, they extend the minimum variance selection principle kernel used to select the optimal kernel in the interior region, as in
Epanechnikov (1969) andGranovsky andMüller (1991). Although this estimatorhas interestingproperties, it remains complicated
in practice. In addition, it requires an additional bandwidth parameter and a weighting function. In the nonparametric regression
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context, the problem of boundary bias is developed by Gasser et al. (1985) and Zhang et al. (1999) for the univariate case, and
Fan and Gijbels (1992), Ruppert (1994), Staniswalis et al. (1993), and Staniswalis and Messer (1996) for multivariate data.

This paper proposes a nonparametric product kernel estimator for density functions of multivariate bounded data. Estimation
is based on a gamma kernel or a local linear kernel when the support of the variable is nonnegative and a beta kernel when the
support is a compact set. Based on these kernels, the density estimators are robust to the boundary problem. The method is easy
in conception and implementation. We provide the asymptotic properties of these estimators and show that the optimal rate of
convergence of the mean integrated squared error is obtained. For the multivariate uniform density, we show that the estimator
we propose using beta kernels is asymptotically unbiased. We examine the finite sample performance in several simulations. As
for any nonparametric kernel estimator, the performance is sensitive to the choice of the bandwidth parameters. We suggest the
application of the least squares cross-validation method to select these parameters. We prove the consistency of this method for
the proposed estimators and investigate its performance in the simulations.

The rest of the paper is organized as follows.We introduce themultivariate nonparametric estimator formultivariate bounded
data in Section 2. Section 3 provides convergence properties. The consistency of the least squares cross-validation bandwidth
selection method is established in Section 4. In Section 5 we investigate the finite sample properties of several kernel estimators
for nonnegative bivariate data. Section 6 contains two applications, one with lottery data and another with corporate finance
data. Section 7 concludes. The proofs of the theorems are presented in the Appendix.

2. Nonparametric estimator

Let {(Xi1, . . . ,Xid), i=1, . . . ,n} be a sample of independent and identically distributed randomvariableswith an unknowndensity
function f. The general multivariate nonparametric density estimator is given by

f̂ (x) = f̂ (x1, . . . , xd) = 1
nh1, . . . ,hd

n∑
i=1

K
(
x1 − Xi1

h1
, . . . ,

xd − Xid

hd

)
,

where K denotes a multivariate kernel function and (h1, . . . ,hd) the vector of bandwidth parameters.
In practice the choice of K is especially difficult when the supports of the random variables are potentially unequal. Therefore,

we propose to use the product kernel estimator with adapted and flexible kernels in order to solve the boundary bias problem.
The estimator is defined as

f̂ (x1, . . . , xd) = 1
n

n∑
i=1

d∏
s=1

Ks(hs,Xis)(xs), (1)

where h1, . . . ,hd are the bandwidth parameters and the kernel Ks is a kernel for variable s. Throughout the paper, this superscript
s will be omitted for notational convenience. As described in the Introduction, the kernel for each variable is chosen to be the
Gaussian kernel, which is indeed optimal when the total support is Rd. We consider two cases for random variableswith bounded
support.

First, when the support of the variable is nonnegative, we propose the use of either the local linear kernel denoted by KL or
one of the two gamma kernels KG, KNG as shown below. Thus,

KL(h, t)(z) = Kl

(
z,h,

z − t
h

)
,

where

Kl(z,h, y) = a2(z,h) − a1(z,h)y
a0(z,h)a2(z,h) − a21(z,h)

K(y),

K is any symmetric kernel with a compact support [−1, 1]. Throughout the paper we take the Epanechnikov kernel and

as(z,h) =
∫ z/h

−1
zsK(z)dz.

For more details on the local linear kernel, see Lejeune and Sarda (1992), Jones (1993), and Neilsen (1999).
The kernels KG and KNG, for which we denote the bandwidth by b, are respectively defined as

KG(b, t)(z) = tz/b exp(−t/b)
bz/b+1�(z/b + 1)

and

KNG(b, t)(z) = t�(z)−1 exp(−t/b)
b�(z)�(�(z))

,
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