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Robust statistics allows the distribution of the observations to be any member of a suitable
neighborhood about an ideal model distribution. In this paper, the ideal models are semi-
parametric with finite-dimensional parameter of interest and a possibly infinite-dimensional
nuisance parameter.
In the asymptotic setup of shrinking neighborhoods, we derive and study the Hampel-type
problem and theminmaxMSE-problem.We show that, for all common types of neighborhood
systems, the optimal influence function �̃ can be approximated by the optimal influence func-
tions �̃n for certain parametric models.
For general semiparametric regression models, we determine (�̃n)n∈N in case of error-in-
variables and in case of error-free-variables.
Finally, the results are applied to Cox regression where we compare our approach to that of
Bednarski [1993. Robust estimation in Cox's regression model. Scand. J. Statist. 20, 213–225]
in a small simulation study and on a real data set.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

Although in most situations, a model distribution P may serve as a reasonable description for the bulk of the data from an
experiment, the real distributionwill only approximately be captured by themodel. So, robust statistics only assumes that the real
distribution lies in a suitable neighborhood about the “ideal” distribution P. Most results in semiparametrics being asymptotic, we
employ the asymptotic setup of shrinking neighborhoods. See Bickel (1981), Rieder (1994) and, for a motivation of the shrinking
rate 1/

√
n, Ruckdeschel (2006).

On arbitrarily small such neighborhoods, bias may get out of control, all the more so if the procedure is efficient at the
ideal model. Thus efficiency has to be complemented somehow with a robustness criterion to obtain a reasonable criterion for
robust optimality. For the important class of asymptotically linear estimators, two optimality problems have been considered:
minimizing the (trace of the asymptotic co)variance subject to a uniformbias bound on thewhole neighborhood about P (Hampel-
problem) and, more or less equivalent, minimizing the maximal (asymptotic) mean square error on the neighborhood about P
(MSE-problem).
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The starting point of our investigations is Cox regression which is certainly the most common model in survival analysis. For
this model, Cox (1972) proposes the so-called Cox partial likelihood estimator. But this estimator is not robust. This is e.g. shown
by Samuels (1978), Struthers and Kalbfleisch (1986) and Bednarski (1989). Asymptotically linear estimators for Cox regression
which are robust in the sense of Fréchet differentiability are derived in Bednarski (1993) and Sasieni (1993) (cf. also Bednarski and
Nowak, 2003). Optimality of these estimators with respect to the statistical criteria mentioned above (Hampel-/MSE-problem),
however, has not been investigated by these authors.

If the idealmodel is a parametricmodel, it iswell-knownhow to solve theMSE-/Hampel-problem (cf. Rieder, 1994).Motivated
by Cox regression, we consider the MSE-problem in case of semiparametric models where the ideal distribution is only known
up to a finite-dimensional parameter and a possibly infinite-dimensional nuisance parameter. In these models, there are three
typical situations:

The solution of the parametric model (with nuisance parameter known) is already orthogonal to the tangent space of the
nuisance component and, thus, it is the solution for the semiparametric model (with nuisance parameter unknown). This is the
case of robust adaptivity. Symmetric adaptive location may serve as an example (cf. Stein, 1956; Bickel, 1982; Stabla, 2005). If,
secondly, the tangent space of the semiparametric model equals an L2-space with respect to some less informative �-algebra
(as it is e.g. in mixture models), an explicit solution can be derived (cf. Shen, 1995; Fischer, 2006). In the third situation, as in
Cox regression, where none of the previous assumptions are satisfied, Shen (1995) shows that, for the Hampel-problem and
contamination-type neighborhoods, the optimal influence function �̃ can at least be approximated by the optimal influence
functions �̃n of certain parametric models.

Firstly, in Section 2, we extend this result to all common types of neighborhood systems and to the MSE-problems as well.
Secondly, in Section 3, the theory of linear robust regression of Rieder (1994, Chapter 7) is extended to a theory of general

robust regression. A sequence of approximations �̃n, n ∈ N, is determined for contamination-type neighborhoods in case of
errors-in-variables (Section 3.1) and in case of error-free-variables (Section 3.2).

Thirdly, the results are applied to Cox regression in Section 4 where we compare our approach to that of Bednarski (1993) by
means of a small simulation study and a real data set.

1.2. Setup

A typical semiparametric model is a set of probability measures

P= {
P�,H

∣∣� ∈ �,H ∈ H
}

on a measurable space (�,B) where � is an open subset of Rk and H is any infinite-dimensional set so that the parametric
submodel {P�,H|� ∈ �} is L2-differentiable for every H ∈ H. For � ∈ � and H ∈ H, let ��,H be the score function of the parameter
� in P�,H . Furthermore, let

�2P�,H ⊂
{
g ∈ L12(P�,H)

∣∣∣EP�,Hg = 0
}

be a tangent set of P at P�,H . For these basic concepts of semiparametric models, see e.g. Bickel et al. (1993) or van der
Vaart (1998).

The class of asymptotically linear estimators consists of all sequences of estimators (Sn)n∈N such that

Sn : (�n,B⊗n) −→ (Rk,B⊗k)

and

√
n(Sn − �) = 1√

n

n∑
i=1

��,H(xi) + oP⊗n
�,H

(n0) (1)

Here, ��,H is called (semiparametric) influence function and, according to Rieder (2000, Chapter 2), may be any element of

��,H :=
{
� ∈ Lk2(P�,H)

∣∣∣∣EP�,H� = 0, EP�,H��′
�,H = Idk×k,

EP�,Hg� = 0 ∀g ∈ �2P�,H

}

The influence function of an asymptotically linear estimator indicates its sensitivity to deviations from the ideal model. For
the basic types of neighborhood systems used in robust statistics, the bias of an asymptotically linear estimator with influence
function ��,H is defined by

	�,H;∗(��,H) = sup
{∣∣∣EP�,H 
��,H

∥∥ 
 ∈ G∗(�,H)
}

where

G∗(�,H) ⊂
{

 ∈ L1∞(P�,H)

∣∣∣EP�,H
 = 0
}
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