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In this paper, we study an inference problem for a stochastic model where k deterministic
Lotka–Volterra systems of ordinary differential equations (ODEs) are perturbed with k pairs
of random errors. The k deterministic systems describe the ecological interaction between k
predator–prey populations. These k deterministic systems depend on unknown parameters.
We consider the testing problem concerning the homogeneity between k pairs of the interac-
tion parameters of the ODEs. We assume that the k pairs of random errors are independent
and that, each pair follows correlated Ornstein–Uhlenbeck processes. Thus, we extend the
stochastic model suggested in Froda and Colavita [2005. Estimating predator–prey systems
via ordinary differential equations with closed orbits. Aust. N.Z. J. Stat. 2, 235–254] as well
as in Froda and Nkurunziza [2007. Prediction of predator–prey populations modeled by per-
turbed ODE. J. Math. Biol. 54, 407–451] where k=1. Under this statistical model, we propose a
likelihood ratio test and study the asymptotic properties of this test. Finally, we highlight the
performance of our method through some simulations studies.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Consider k different geographical areas numbered from 1 to k, (k�1). In geographical area number m, we consider the
predator–prey system described by the Lotka–Volterra ODE system (Lotka, 1925; Volterra, 1931)

dxm(t)/dt = (�m − �mym(t))xm(t), dym(t)/dt = (�mxm(t) − �m)ym(t), (1)

with (xm(0), ym(0)) = (xm0, ym0) fixed, xm0>0, ym0>0, �m>0, �m>0, �m>0, �m>0, m = 1, 2, . . . , k. Also, we suppose that each
initial value (xm0, ym0) is different from an equilibrium point. Hence, the solution of the system (1) cannot be trivial.

Theoretically, xm(t) and ym(t) are the population sizes in the area m (at time t) of the prey and the predator, respectively.
The parameter �m is the birth rate of the prey when the predator is absent, �m is the death rate of the predator when the prey
is absent while �m and �m are the interaction parameters. The parameters �m and �m are considered as constant and intrinsic
to the species of the prey and the predator respectively. In practice, for each area number m, we have N pairs of observations
(X(m)

1 ,Y(m)
1 ), (X(m)

2 ,Y(m)
2 ), . . . , (X(m)

N ,Y(m)
N ) observed at discrete times 0<t1<t2< · · ·<tN , whereX(m)

i andY(m)
i , represent respectively

the sizes of the population of the prey and the predator observed at time ti, i = 1, 2, . . . ,N. We assume that these N pairs of
observations are generated by a stochastic model which is given in Section 2.

So far, Froda and Colavita (2005) andNkurunziza (2005) aswell as Froda andNkurunziza (2007) proposed estimationmethods
when k = 1, for the four parameters �m, �m, �m, �m. Also, for k = 1, Nkurunziza (2008) proposed the likelihood ratio test for the
two interaction parameters �m and �m. In this paper, we are interested in testing problems concerning the homogeneity of the k
pairs of interaction parameters (�m, �m). In order to simplify the problem, we assume that the k pairs of parameters (�m,�m) are
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equal and do not depend on the interaction parameters. This assumption is justified by the fact that �m and �m are considered
as constant and intrinsic to the species of the prey and the predator, respectively. In other words, we assume that the factor
geographical area may affect the interaction parameters, but cannot affect the intrinsic parameters. To simplify the notation, let
(�,�) be the common value of (�m,�m). Statistically, we are interested in testing

H0 : (�1,�1) = (�2,�2) = · · · = (�k,�k) against HA : (�m,�m)� (�j,�j) for some 1�m<j� k. (2)

The major difficulty of this problem, resides in the fact that the systems (1) do not admit an explicit analytical solution. In other
words, we cannot write the solution (xm(t), ym(t)) as an explicit function of the four parameters (�m,�m,�,�). Because of that,
there is no straightforward solution to the testing problem (2). To this end, we use the fact that the trajectory (xm(t), ym(t)) is a
periodic function.

Indeed, let �(�m,�m,�,�, xm0, ym0) be the trajectory period. Thus, the period �(�m,�m,�,�, xm0, ym0) is a function of
(�m,�m,�,�, xm0, ym0). It should be noted that, when the initial value is close to the equilibrium point, (�/�m,�/�m), the pe-
riod �(�m,�m,�,�, xm0, ym0) ≈ 2�/

√
�� and this last term does not depend on the parameters �m,�m. In this paper, we give a

sufficient condition, on (xm0, ym0), for the function �(�m,�m,�,�, xm0, ym0) to be constant with respect to the parameters �m,�m
(see Corollary A.2 in Appendix A). For more details about the intrinsic property of the period for some predator–prey systems,
we refer the reader to Ginzburg and Colyvan (2004, p. 64, 77).

The rest of the paper is organized as follows. In Section 2, we give the preliminary results and set up assumptions as well as
some notation. Section 3 presents the likelihood ratio test when the nuisance parameters are known. In Section 4, we present the
test when these parameters are unknown and simulation studies. Section 5 gives the Conclusion. Technical details and proofs are
relegated to Appendix A and Appendix B.

2. Statistical model and preliminary results

In this section, we present the statistical model and set up some notation used in the sequel. Asmentioned in the Introduction,
we would like to test

H0 : (�1,�1) = (�2,�2) = · · · = (�k,�k) against HA : (�m,�m)� (�j,�j) for some 1�m<j� k. (3)

Further, we have other nuisance parameters like as �,�, xm0, ym0. The solution of the testing problem (3) is given in two main
steps. First, we consider the case where we know the nuisance parameters. In this case, the proposed test is the likelihood ratio
test. Second, we consider the more realistic case where the nuisance parameters are unknown. In this last case, we establish a
test which is asymptotically as powerful as the likelihood ratio test.

From the methodological point of view, we adopt a statistical model that is similar to that given in Froda and Nkurunziza
(2007) for the particular casewhere k=1. Namely, we assume that, (X(m)

i ,Y(m)
i ), i=1, 2, . . . ,N,m=1, 2, . . . , k are observed at discrete

times 0<t1<t2< · · ·<tN; where X(m)
i ≡ Xm(ti), Y

(m)
i ≡ Ym(ti), m = 1, 2, . . . , k, and, for each geographical area m = 1, 2, . . . , k, the

observed values are generated by a process with continuous paths {(Xm(t),Ym(t)), 0� t� T}, satisfying

logXm(t) = log xm(t) + em,X
t , logYm(t) = log ym(t) + em,Y

t , m = 1, 2, . . . , k. (4)

Also, we assume that, the k pairs of process errors are independent and that, for each geographical area m = 1, 2, . . . , k, each
noise component {(em,X

t , em,Y
t ), 0� t� T} is an Ornstein–Uhlenbeck process (see e.g. Kutoyants, 2004, p. 51), with a particular

dependence structure defined in Assumption (C1). More precisely,

dem,X
t = −cme

m,X
t dt + 	m dWm,X

t , dem,Y
t = −cme

m,Y
t dt + 	m dWm,Y

t , (5)

where 	m>0, cm >0, and {Wm,X
t , t�0} as well as {Wm,Y

t , t�0} are Wiener processes which satisfy the following assumption.

Assumption (C1). Form= 1, 2, . . . , k, the Wiener processes {Wm,X
t , t�0} and {Wm,Y

t , t�0} are jointly Gaussian and such that, for
all i, j = 1, 2, 3, . . ., Cov(Wm,X

ti
,Wm,X

tj
) = 
m min(ti, tj), where |
m|<1.

Proposition 1 gives necessary and sufficient conditions for Assumption (C1) to be satisfied. Moreover, this proposition high-
lights the existence of Wiener processes satisfying (C1). Also, under Assumption (C2), Proposition 1, allows us to simplify some
computations. Indeed, in the sequel, we assume, without loss of generality, that 
m=0,m=1, 2, . . . , k. In fact, if 
m �0 but |
m|<1,
we can consider the following transformation:

ẽm,X
t = (em,X

t + em,Y
t )/
√
2(1 + 
m), ẽm,Y

t = (em,Y
t − em,X

t )/
√
2(1 − 
m). (6)

Proposition 1 shows that, {̃em,X
t , t�0} and {̃em,Y

t , t�0} are independent Ornstein–Uhlenbeck processes (i.e. satisfy (C1) where 
m
transforms into 
̃m = 0).
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