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a b s t r a c t

A supersaturated design is a design for which there are fewer runs than effects to be

estimated. In this paper, we propose a method for screening out the important factors

from a large set of potentially active variables, based on an information theoretical

approach. Three entropy measures: Rényi entropy, Tsallis entropy and Havrda–Charvát

entropy, have been associated with the measure of information gain, in order to identify

the significant factors using data and assuming generalized linear models. The investiga-

tion of the proposed method performance and the comparison of each entropic measure

application have been accomplished through simulation experiments. A noteworthy

advantage of this paper is the use of generalized linear models for analyzing data from

supersaturated designs, a fact that, to the best of our knowledge, has not yet been studied.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Technology and science, which are firmly connected with industrial applications, have led, due to their recent progress, to
superior and more complicated systems. These large-scale systems involve many potentially important factors which may be
varied during experiment design and operation, but commonly only a few of them are expected to be active. The effective
factors are however unknown a priori. The situation where many effects are unimportant is called ‘‘effect sparsity’’ and this
phenomenon was studied by Box and Meyer (1986).

Hence, it is obvious that experimenters need to investigate methods for a number of factor reductions, in order to succeed
in time and cost benefits. In the last decades, researchers have focused on designs for which there are fewer runs than effects
to be estimated in a proposed model, called supersaturated designs. Supersaturated designs have been shown to be effective
for sifting through a large number of potentially important factors in order to identify those which mainly affect the
performance of a system. In such conditions, the experimenter centers on only up to p active factors from the initial set of m

factors involved in the experiment.
In such a decision problem, errors of various types and costs must be balanced. In screening designs, there is a cost of

declaring an inactive factor to be active (Type I error), and a cost of declaring an active effect to be inactive (Type II error). Type
II errors are troublesome as addressed in Lin (1995), as well as Type I errors, since they can cause unnecessary cost in follow-
up experiments and they can cause detrimental actions if the experiment has immediate impact in practice. Under
circumstances of effect sparsity, Type I errors are very likely.

The idea of SSDs was initiated in the 1950s, when Satterthwaite (1959) proposed this class of designs. Since then, many
methods for supersaturated designs construction have been proposed, for example, among others (Lin, 1993; Wu, 1993;
Nguyen, 1996; Tang and Wu, 1997).
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In contrast to the wide study of construction methods of SSDs, their analysis methods are yet in an early research stage,
although many different approaches for analyzing SSDs are provided in the statistical literature of the recent years.

Hamada and Wu (1992) used the Plackett–Burman designs in screening experiments for identifying important main
effects, whereas a half fraction of Plackett–Burman designs were used by Lin (1993) who suggested and performed the
forward selection method for identifying active factors. Wang (1995) applied this analysis on the other half fraction of
Plackett–Burman design and a few years later, a Bayesian variable selection method for analyzing experiments with complex
aliasing was proposed by Chipman et al. (1997). Abraham et al. (1999) applied stepwise and all-models methods to
investigate the active factors, Beattie et al. (2002) proposed a two-stage Bayesian model selection strategy for SSDs, while Li
and Lin (2002) proposed a variable selection approach based on penalized least squares. Holcomb et al. (2003) proposed
contrast-based methods, while Lu and Wu (2004) proposed a modified stepwise selection based on the idea of staged
dimensionality reduction and Zhang et al. (2007) suggested a method based on partial least squares.

This paper is organized as follows. In Section 2, we present the entropic measures used and we discuss how to apply these
measures in the proposed method. In Section 3, we perform some simulation experiments to evaluate the suggested method
comparing the use of each measure. In Section 4 the emergent results are discussed and some concluding comments
are given.

2. Analysis of supersaturated designs via entropic measures application

Generalized linear models (GLMs) have been used for the implementation of the proposed method, especially a logistic
regression model, where the response variable has only two possible outcomes, denoted by 0 and 1, has been taken into
consideration.

Hence, we may consider now a logistic regression model, whose general form is the following:

yk ¼ xkubþek,

where xk=[1,xk1, xk2,y,xkm], bu¼ ½b0,b1,b2, . . . ,bm� and the response variable yk takes on the value either 0 or 1. We will
assume that the response variable yk is a Bernoulli random variable with probability distribution Pðyk ¼ 1Þ ¼ pk, where
pk ¼ expðxkubÞ=ð1þexpðxkubÞÞ. For more details on logistic regression model, we refer the interested reader to McCullagh and
Neider (1989) and Montgomery et al. (2006).

The suggested method is an information theoretical approach of variable selection issue, as it is based on three entropies:
Rényi entropy, Tsallis entropy and Havrda–Charvát entropy.

Shannon (1948) introduced the concept of entropy which has a central role in information theory and may be considered a
measure of the uncertainty associated with a random variable, since it is defined in terms of its probability distribution. In
other words, Shannon entropy is a measure of the average information content that is missing when the value of the random
variable is unknown and is a way for quantifying the information. Shannon entropy has been used widely in many
applications, one of which is in the top-down decision tree algorithm C5.0, the foundation of most data mining packages.

Rényi (1961) generalized Shannon entropy to a one-parameter family of entropies by defining an entropy of order awhich
is called the Rényi entropy. The concept of Rényi entropy has a number of applications in coding theory, statistical mechanics,
statistics and other related fields. See for instance Bercher (2008), Jenssen and Eltoft (2008), and Zografos (2008)). In 2009,
Golshani et al. (1992) defined the conditional Rényi entropy, giving a definition different from the one that Cachin (1997) gave
in 1997 and hence the validity of the chain rule for Rényi entropy is now proved.

More precisely, the Rényi entropy of a probability distribution P=(p1,y,pn) or of a random variable X, with probability
distribution P(X=xi)=pi, i=1,2, y,n, is defined as

HaðXÞ ¼HaðPÞ ¼
1

1�a
log

Xn

i ¼ 1

pai , a40, aa1:

The Rényi entropy tends to Shannon entropy as a-1.
Considering a random vector (X,Y) with probability distribution P(X=xi,Y=yj)=pij, i=1,2,y,n and j=1,2,y,m, then the joint

Rényi entropy is given by the form

HaðX,YÞ ¼
1

1�a
log

Xn

i,j ¼ 1

paij , a40, aa1:

According to that obtained by Golshani et al. definition, the conditional Rényi entropy of random variable Y, given X, is
defined as
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