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a b s t r a c t

Linear combinations of random variables play a crucial role in multivariate analysis.

Two extension of this concept are considered for functional data and shown to coincide

using the Lo�eve–Parzen reproducing kernel Hilbert space representation of a stochastic

process. This theory is then used to provide an extension of the multivariate concept of

canonical correlation. A solution to the regression problem of best linear unbiased

prediction is obtained from this abstract canonical correlation formulation. The classical

identities of Lawley and Rao that lead to canonical factor analysis are also generalized to

the functional data setting. Finally, the relationship between Fisher’s linear discriminant

analysis and canonical correlation analysis for random vectors is extended to include

situations with function-valued random elements. This allows for classification using

the canonical Y scores and related distance measures.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Functional data analysis (FDA) is a rapidly developing area in statistics due, in large part, to the pioneering work of
Ramsay and Silverman (2005). The basic FDA premise is that one has infinite dimensional observations in the form of
curves and wishes to analyze the data using techniques that parallel those from multivariate analysis.

In this article we describe a theoretical framework that can be used to formulate FDA methodology. Our approach relies
on the Loéve–Parzen congruence that links a second order stochastic process with the reproducing kernel Hilbert space
(RKHS) generated by its covariance kernel. This congruence provides the vehicle for developing a rigorous formulation of
functional canonical correlation analysis (CCA) as detailed in Section 3. Functional CCA is then used to provide a
generalization of key results for multivariate regression, factor analysis, MANOVA and discriminant analysis. In all cases
these extensions are backward compatible in that they reduce to their parallels from multivariate analysis when the
dimensionality is finite.

The paper is organized as follows. In the next section we extend the concept of linear combinations of random variables
to the FDA setting. Then, in Section 3 we use this idea to describe the functional canonical correlation concept of Eubank
and Hsing (2008). Section 4 generalizes a formula that connects multivariate regression and canonical correlation while
Section 5 provides a similar extension of the Rao (1955) canonical factor analysis identity. Finally, Section 6 details how
CCA can be applied to situations with multiple populations to produce formulations of functional analysis of variance and
discriminant analysis. In the process we extend the equivalence between Fisher’s linear discriminant analysis and
canonical correlation analysis to an abstract data setting.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jspi

Journal of Statistical Planning and Inference

0378-3758/$ - see front matter & 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.jspi.2010.04.030

� Corresponding author. Tel.: +1 480 965 3724; fax: +1 480 965 8119.

E-mail addresses: amk@math.la.asu.edu (A. Kupresanin), hjshin@auburn.edu (H. Shin), dbking@asu.edu (D. King), eubank@math.asu.edu (R.L. Eubank).

Journal of Statistical Planning and Inference 140 (2010) 3627–3637

www.elsevier.com/locate/jspi
dx.doi.org/10.1016/j.jspi.2010.04.030
mailto:amk@math.la.asu.edu
mailto:hjshin@auburn.edu
mailto:dbking@asu.edu
mailto:eubank@math.asu.edu
dx.doi.org/10.1016/j.jspi.2010.04.030


2. H-valued random variables

In this section we examine two ways of modeling the random structure that produces functional data. Both approaches
have appeared in the FDA literature. Their unifying theme is that the data are, in some sense, realizations of ‘‘random
functions.’’ This intuitive view can be made rigorous through consideration of Hilbert space valued random variables as we
now explain.

Let fO,A,Pg be a probability space with H representing a real, separable Hilbert space with inner product / � , �SH and
norm J � JH. The s- field generated by the class of all open subsets of H is denoted by B. A mapping X : O-H is called an
H-valued random variable if X is B- measurable. A prototypical setting for FDA derives from this perspective by assuming
that data are realization of an H- valued random variable with H a Hilbert function space.

The finite dimensional multivariate paradigm relies on linear combinations of vector random variables for the purpose
of dimensionality reduction. A parallel of this approach for H- valued random variables employs linear functionals of X

(Laha and Rohatgi, 1979, Remark 7.1.2). Specifically, we can obtain a real valued, Hilbert space indexed, stochastic process
fUðf Þ : f 2 Hg by taking

Uðf Þ ¼/f ,XSH

Assume
R
HJf J2 dPXðf Þo1 for all f 2 H with PX the probability measure that X induces on H. Then (see, e.g., Laha and

Rohatgi, 1979), there is an element of H that represents the mean for Uð�Þ and a linear operator that provides the
covariances for these random variables. The mean is determined by the (unique) member m of H that satisfies

E½Uðf Þ� :¼

Z
H
/h,fSH dPXðhÞ ¼/m,fSH

for all f 2 H. Since m plays no role in our development until Section 5, we will assume that m¼ 0 for the present. In that
event, the covariance operator for X is determined (uniquely) by the linear mapping SX : H-H that satisfies

E½Uðf ÞUðgÞ� :¼

Z
H
/h,fSH/h,gSH dPXðhÞ ¼/f ,SXgSH

for all f ,g 2 H.
The covariance operator is Hilbert–Schmidt (Laha and Rohatgi, 1979, Proposition 7.5.2) and therefore admits the

decomposition

SX ¼
X1
j ¼ 1

ljfj�Hfj

where l14l24 � � � are the eigenvalues of the operator, ffjg
1
j ¼ 1 are the associated eigenfunctions and �H is the operator

defined by

ðg�Hf Þh¼/g,hSHf

We can now create the pre-Hilbert space

a : a¼
Xn

j ¼ 1

fjUðfjÞ,fj 2 R,n 2 Zþ

8<
:

9=
;

equipped with the inner product /a1,a2SL2
U
¼ E½a1a2�. The completion of this space will be denoted by LU

2 and can be viewed
as the set of all linear combinations, in an extended sense, of the members of fUðfjÞ : j 2 Zþ g.

The covariance kernel for the Uð�Þ process is

CovðUðf1Þ,Uðf2ÞÞ ¼/f1,SXf2SH :¼ KUðf1,f2Þ

for f1,f2 2 H. The Moore–Aronszajn theorem (Aronszajn, 1950, Section 2) ensures that there is a unique reproducing kernel
Hilbert space associated with KU. Following Parzen (1970, Section 9) we can characterize this RKHS as

HðKUÞ ¼ ‘ : ‘ðgÞ ¼
X1
j ¼ 1

ljfj/g,fjSH,
X1
j ¼ 1

ljf
2
j o1

8<
:

9=
;

This Hilbert space is congruent to L2
U; that is, there is a 1–1, norm-preserving, linear map CU that maps HðKUÞ onto L2

U. This
congruence is an example of the Lo�eve–Parzen RKHS representation for a second order process (e.g., Lo�eve, 1948; Parzen,
1961a). For the Uð�Þ process it is possible to characterize the congruence as we will now describe.

Using the eigensystem for SX we may express X in terms of a Karhunen–Lo�eve type expansion as

X ¼
X1
j ¼ 1

/X,fjSHfj
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