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a b s t r a c t

Given m time series regression models, linear or not, with additive noise components, it

is shown how to estimate semiparametrically the predictive probability distribution of

one of the time series conditional on past random covariate data. This is done by

assuming that the distributions of the residual components associated with the

regression models are tilted versions of a reference distribution.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The problem of time series prediction is revisited in this paper, given m time series that are regressed linearly or non-
linearly on covariate time records. The m time series need not be of the same length, they may be stationary or non-
stationary, dependent or independent, and they may be relatively short. The approach depends on well behave residuals in
a system of m regression equations, and certain ‘‘tilt’’ relationships between their probability density functions. That is,
relationships between probability densities g1,y,gq and a reference or baseline density g � gm of the form

gjðxÞ ¼ expfajþb0jhðxÞggðxÞ, j¼ 1, . . . ,q, ð1Þ

with scalars aj, p�1 vectors bj, and a known p�1 vector of real-valued functions hðxÞ.
Using the combined residual data from several time series regression models it is shown how to estimate the

probability distribution of a ‘‘reference’’ time series and use it in conditional prediction. In essence, it is a certain extension
of a semiparametric method to time series discussed in the context of random samples in Fokianos et al. (2001), Gilbert
et al. (1999), Qin (1993), Qin and Lawless (1994), Qin and Zhang (1997), and Zhang (2000a, b).

The present paper should be viewed as a review of some recent developments akin to the cited references and related
work. It presents a novel concept in time series prediction and some supporting empirical evidence in terms of real data.
Our basic idea of estimating predictive distributions is an alternative to Bayesian methods described, for example, in
Geisser (1993) (general), De Oliveira et al. (1997) (spatial interpolation), and Kedem and Fokianos (2002) (time series).

2. A density ratio model for time series

Consider now the following system of m= q+1 time series regression models:

x1t ¼ f1ðz1,t�1Þþe1t , t¼ 1, . . . ,n1,

^
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xqt ¼ fqðzq,t�1Þþeqt , t¼ 1, . . . ,nq,

xmt ¼ fmðzm,t�1Þþemt , t¼ 1, . . . ,nm, ð2Þ

where the vectors zk,t�1 contain past values of covariate time series possibly including even past values of x1 t,y, xqt, xmt,
and where the ek, k=1,y, q, m, are independent noise components. A special case of (2) is multivariate first order
autoregression. We approach time series prediction through the distribution of the noise components.

To motivate the basic idea of the paper it is helpful to first treat rigorously the scenario where each noise sequence fektg,
corresponding to the kth regression model, consists of independent and identically distributed (iid) random variables. In
applications the fektg are replaced by the corresponding residuals fêktg, as is done in two examples below.

Suppose that for each t, ejt is distributed according to an unknown probability density gj(x), j=1,y,q, m. Designate
gðxÞ � gmðxÞ as the reference density. Then, emboldened by the results in the aforementioned references, we shall assume that
each gj is a tilt or distortion of the reference g as in (1). Zhang (2000a) advocates the use of h(x)= x or hðxÞ ¼ ðx,x2Þ in logistic
discriminant analysis. The choice of hðxÞ ¼ ðx,x2Þ also has been found useful in cluster detection which requires repeated
multiple testing (Kedem and Wen, 2007). In an application to radar meteorology, h(x)=log x was used in conjunction with
reflectivity data (Kedem et al., 2004). Notice that the bj are scalars whenever h(x) is a real valued function.

The objective is to estimate all the aj,bj, the reference density g, and the corresponding cdf G, for the purpose of
predicting the future reference value xm,t + 1. This is done using the combined noise ‘‘data’’ from all the m ‘‘samples’’

s¼ ðt1, . . . ,tnÞ � fðe1, . . . ,e1n1
Þ, . . . ,ðeq1, . . . ,eqnq

Þ,ðem1, . . . ,emnm Þg ð3Þ

of length n¼ n1þ � � � þnqþnm. Then, using the estimator Ĝ of G we can estimate future probabilities of events formulated
in terms of the ‘‘reference’’ xm, t + 1 conditional on zm,t.

2.1. Comparison distributions

Interestingly, tilting may be viewed as a variation of comparison densities, a concept advanced by Emanuel Parzen in
many of his papers, for example Parzen (2004). Accordingly, when F and G are both continuous with probability densities f

and g, respectively, and F5G, define the comparison distribution

Dðu;G,FÞ ¼ FðG�1ðuÞÞ, 0ouo1:

The corresponding comparison density is defined as

dðu;G,FÞ ¼ f ðG�1ðuÞÞ=gðG�1ðuÞÞ

or

f ðG�1ðuÞÞ ¼ dðu;G,FÞgðG�1ðuÞÞ ð4Þ

which formally is similar to (1). That is, (4) is a form of tilting of a reference g. An analogous relationship holds in the
discrete case.

3. Semiparametric estimation

A maximum likelihood estimator of G(x) can be obtained by maximizing the likelihood over the class of step cdf’s with
jumps at the values t1, . . . ,tn (Fokianos et al., 2001; Gilbert et al., 1999; Qin and Lawless, 1994; Qin and Zhang, 1997).

Let wjðtÞ ¼ expfajþb0jhðtÞg, j=1,y, q, and pi ¼ dGðtiÞ, i=1,y, n. Then the empirical likelihood becomes (Fokianos et al.,
2001; Owen, 2001; Qin and Zhang, 1997)

Lða,b1, . . . ,bq,GÞ ¼
Yn

i ¼ 1

pi

Yn1

j ¼ 1

expða1þb01hðe1jÞÞ � � �
Ynq

j ¼ 1

expðaqþb0qhðeqjÞÞ

¼
Yn

i ¼ 1

pi

Yn1

j ¼ 1

w1ðe1jÞ � � �
Ynq

j ¼ 1

wqðeqjÞ: ð5Þ

Fix a,b1, . . . ,bq. Then maximizing (5) with respect to the pi subject to the constraints

Xn

i ¼ 1

pi ¼ 1,
Xn

i ¼ 1

pi½w1ðtiÞ�1� ¼ 0, . . . ,
Xn

i ¼ 1

pi½wqðtiÞ�1� ¼ 0

we obtain (Fokianos et al., 2001; Kedem and Wen, 2007),

pi ¼
1

nm
�

1

1þr1w1ðtiÞþ � � � þrqwqðtiÞ
, ð6Þ

where rj ¼ nj=nm, j=1,y, q, are the relative series sizes. Substituting the pi in (6) back into (5) gives the log-likelihood as a
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