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The weighted likelihood is a generalization of the likelihood designed to borrow strength from
similar populations while making minimal assumptions. If the weights are properly chosen,
themaximumweighted likelihood estimatemay perform better than themaximum likelihood
estimate (MLE). In a previous article, the minimum averaged mean squared error (MAMSE)
weights are proposed and simulations show that they allow to outperform the MLE in many
cases. In this paper, we study the asymptotic properties of the MAMSE weights. In particular,
we prove that the MAMSE-weighted mixture of empirical distribution functions converges
uniformly to the target distribution and that the maximum weighted likelihood estimate is
strongly consistent. A short simulation illustrates the use of bootstrap in this context.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The weighted likelihood is a frequentist method that allows to borrow strength from datasets that do not follow the target
distribution exactly. Thiswork is a sequel to that of Hu (1994), later published as Hu and Zidek (2002), who designed theweighted
likelihood in order to take advantage of the relevant information contained in such samples. In the formulation of the weighted
likelihood, an exponential weight discounts the contribution of each datum based on the discrepancy of its distribution with that
of the target population.

In the context of dependent data (e.g. smoothing), Hu et al. (2000) use covariates to determine likelihood weights, but not the
response variables themselves. In a different setting where the distribution of data stabilizes through time, Hu and Rosenberg
(2000) use weights that are determined by a function whose parameter is set by minimizing the mean squared error (MSE) of
the resulting estimate.

Although the initial paradigm of the weighted likelihood allows each datum to come from a different population, we rather
adopt the same framework as Wang (2001), Wang and Zidek (2005) andWang et al. (2004) where data come as samples fromm
populations. In this context, one could hope to set the weights based on scientific information, but it is more pragmatic and less
arbitrary to determine them based on the data.

Under this paradigm, neither an ad hocmethod suggested byHu and Zidek (2002) nor the cross-validationmethod explored by
Wang and Zidek (2005) provide a satisfactory recipe for finding likelihoodweights. The cross-validationweights, for instance, lack

∗ Tel.: +14169783452; fax: +14169785133.
E-mail address: plante@utstat.toronto.edu.

0378-3758/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.jspi.2008.10.001

http://www.sciencedirect.com/science/journal/jspi
http://www.elsevier.com/locate/jspi
mailto:plante@utstat.toronto.edu


2148 J-.F. Plante / Journal of Statistical Planning and Inference 139 (2009) 2147 -- 2161

numerical stability. Recently, Plante (2008) suggested nonparametric adaptive weights whose formulation is based on heuristics
showing that the weighted likelihood is a special case of the entropymaximization principle. Simulations show that the so-called
MAMSE (minimum averaged mean squared error) weights allow to outperform the likelihood under many scenarios.

Competingmethods that borrow strength froma fixed number of samples typically rely on a hierarchicalmodel. By opposition,
the MAMSE-weighted likelihood does not require to model the extra populations and hence cannot be negatively affected by
model misspecification on a population of secondary interest. In situations where no hierarchical model arises naturally, this
may constitute a major advantage.

The asymptotic properties of the weighted likelihood are studied by Hu (1997) for weights that do not depend on the data.
Asymptotics for adaptive weights are developed by Wang et al. (2004) under the assumption that the weights asymptotically
shift towards Population 1 at a certain rate. As Plante (2008) points out, the MAMSE weights do not follow this behavior and
hence require a special treatment.

In this paper, we study the asymptotic properties of theMAMSEweights, theMAMSE-weightedmixture of empirical distribu-
tion functions (EDFs) and of the corresponding maximum weighted likelihood estimate (MWLE). In Section 2, we introduce the
weighted likelihood and the MAMSE weights formally. A sequence of lemmas is presented in Section 3 to show that a MAMSE-
weighted mixture of EDFs converges uniformly to the target distribution. In Section 4, we prove that the MWLE is a strongly
consistent estimate by generalizing the proof ofWald (1949) for the likelihood. Section 5 discusses the asymptotic behavior of the
MAMSE weights themselves. The use of bootstrap methods is illustrated through simulations in Section 6. The MAMSE-weighted
MWLE offers better performances than themaximum likelihood estimate (MLE) inmany cases, yielding good coverage for shorter
bootstrap confidence intervals (CIs).

2. The weighted likelihood and the MAMSE weights

We introduce a notation that allows for increasing sample sizes as it will be useful for the remaining of this manuscript.
Let (�,B(�), P) be the sample space on which the random variables

Xij(�) : � → R, i = 1, . . . ,m, j ∈ N

are defined. The Xij are assumed to be independent with continuous distribution Fi.
We consider samples of nondecreasing sizes: for any positive integer k, the random variables {Xij : i = 1, . . . ,m, j = 1, . . . ,nik}

are observed. Moreover, the sequences of sample sizes are such that n1k → ∞ as k → ∞. We do not require that the sample sizes
of the other populations tend to ∞, nor do we restrict the rate at which they increase.

Suppose that Population 1 is of inferential interest. If we denote by f (x | �) the family of distributions used to model
Population 1, the weighted likelihood and the weighted log-likelihood are written as

L(�) =
m∏
i=1

ni∏
j=1

f (Xij|�)�i /ni and �(�) =
m∑
i=1

�i

ni

ni∑
j=1

log f (Xij|�)

where the �i�0 are likelihood weights such that
∑m

i=1 �i = 1.
Let F̂ik(x)= (1/nik)

∑nik
j=1 1(Xij�x) be the EDF based on the sample Xij, j= 1, . . . ,nik. The empirical measure associated with F̂ik(x)

allocates a weight 1/nik to each of the observations Xij, j = 1, . . . ,nik.
Plante (2008) shows heuristically that maximizing the weighted likelihood is comparable to maximizing the proximity

between the model f (x|�) and a mixture of them EDFs obtained from the samples at hand. Such a mixture was considered before
by Hu and Zidek (1993, 2002) and Hu (1994) who called it relevance weighted empirical distribution function (REWED). By
comparison, the usual likelihood is akin to maximizing the entropy between f (x|�) and F̂1k(x).

Inspiredby theheuristics brieflydescribedabove, Plante (2008) tries to findweights thatmake themixtureof EDFs
∑m

i=1 �iF̂ik(x)
close to F̂1k(x), but less variable. He proposes the MAMSE objective function.

Some preprocessing steps first discard any sample whose range of values does not overlap with that of Population 1. For the
remaining m samples, we write k= [�1, . . . ,�m]

T and minimize

Pk(k) =
∫ ⎡⎢⎣

⎧⎨⎩F̂1k(x) −
m∑
i=1

�iF̂ik(x)

⎫⎬⎭
2

+
m∑
i=1

�2
i v̂ar{F̂i(x)}

⎤⎥⎦dF̂1k(x) (1)

as a function of k under the constraints �i�0 and
∑m

i=1 �i = 1. We proceed to the substitution

v̂ar{F̂i(x)} = 1
nik

F̂ik(x){1 − F̂ik(x)}

in Eq. (1) based on the variance of the Binomial variable nikF̂i(x) for fixed x. The choice of dF̂1k(x) allows to integrate where the
target distribution F1(x) has most of its mass.
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