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The problem of selecting the correct subset of predictors within a linear model has received
much attention in recent literature. Within the Bayesian framework, a popular choice of prior
has been Zellner's g-prior which is based on the inverse of empirical covariance matrix of the
predictors. An extension of the Zellner's prior is proposed in this article which allow for a
power parameter on the empirical covariance of the predictors. The power parameter helps
control the degree to which correlated predictors are smoothed towards or away from one
another. In addition, the empirical covariance of the predictors is used to obtain suitable pri-
ors over model space. In this manner, the power parameter also helps to determine whether
models containing highly collinear predictors are preferred or avoided. The proposed power
parameter can be chosen via an empirical Bayes method which leads to a data adaptive choice
of prior. Simulation studies and a real data example are presented to show how the power
parameter is well determined from the degree of cross-correlation within predictors. The pro-
posed modification compares favorably to the standard use of Zellner's prior and an intrinsic
prior in these examples.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Consider the linear regression model with n independent observations and let y = (y1, . . . , yn)
′ be the vector of response

variables. The canonical linear model can be written as

y = Xb+ �, (1.1)

where X = (x1, . . . , xp) is an n × p matrix of explanatory variables with xj = (x1j, . . . , xnj)
′ for j = 1, . . . , p. Let b= (�1, . . . ,�p)

′ be the
corresponding vector of unknown regression parameters, and � ∼ N(0,�2I). Throughout the paper, we assume y to be empirically
centered to have mean zero, while the columns of X have been standardized to have mean zero and norm one, so X′X will be the
empirical correlation matrix.

Under the above regression model, it is assumed that only an unknown subset of the coefficients are non-zero, so that the
variable selectionproblem is to identify this unknownsubset. Bayesianapproaches to theproblemof selectingvariables/predictors
within a linear regression frameworkhas received considerable attention over the years, for example see,Mitchell andBeauchamp
(1988), Geweke (1996), George andMcCulloch (1993, 1997), Brown et al. (1998), George (2000), Chipman et al. (2001) and Casella
and Moreno (2006).
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For the linearmodel, Zellner (1986) suggested a particular form of a conjugate normal-Gamma family called the g-prior which
can be expressed as

b|�2,X ∼ N

(
0,

�2

g
(X′X)−1

)
,

�2 ∼ IG(a0, b0), (1.2)

where g>0 is a known scaling factor and a0>0, b0>0 are known parameters of the inverse Gamma distribution with mean
a0/(b0−1). The prior covariancematrix ofb is the scalarmultiple�2/g of the inverse Fisher informationmatrix,which concurrently
depends on the observed data through the design matrix X.

This particular prior has beenwidely adopted in the context of Bayesian variable selection due to its closed form calculations of
all marginal likelihoods which is suitable for rapid computations over a large number of submodels, and its simple interpretation
that it can be derived from the idea of a likelihood for a pseudo-dataset with the same design matrix X as the observed sample
(see, Zellner, 1986; George and Foster, 2000; Smith and Kohn, 1996; Fernandez et al., 2001).

In this paper, we point out a drawback of using Zellner's prior on b particularly when the predictors (xj) are highly correlated.
The conditional variance of b given �2 and X is based on the inverse of the empirical correlation of predictors and puts most of its
prior mass in the direction that causes the regression coefficients of correlated predictors to be smoothed away from each other.
So when coupled withmodel selection, Zellner's prior discourages highly collinear predictors to enter themodels simultaneously
by inducing a negative correlation between the coefficients.

We propose a modification of Zellner's g-prior by replacing (X′X)−1 by (X′X)� where the power � ∈ R, controls the amount of
smoothing of collinear predictors towards or away from each other accordingly as �>0 or �<0, respectively. For �>0, the new
conditional prior variance of b puts more prior mass in the direction that corresponds to a strong prior smoothing of regression
coefficients of highly collinear predictors towards each other. Therefore, by choosing �>0 our proposedmodification in contrast,
forces highly collinear predictors entering or exiting the model simultaneously (see Section 2). Hence, the use of the power
hyperparameter � to the empirical correlation matrix helps us to determine whether models with high collinear predictors are
preferred or not.

The hyperparameter � is further incorporated into the prior probabilities over model space with the same intentions of
encouraging or discouraging the inclusion of groups of correlated predictors. The choice of hyperparameter is obtained via an
empirical Bayes approach and the inference regarding model selection is then made based on the posterior probabilities. By
allowing the power parameter � to be chosen by the data, we let the data decide whether to include collinear predictors or not.

The remainder of thepaper is structured as follows. In Section2,wedescribe indetail thepowered correlationprior andprovide
a simple motivating example, when p = 2. Section 3, describes the choice of new prior specifications for model selection. The
Bayesian hierarchical model and the calculation of posterior probabilities are presented in Section 4. The superior performance
of using the powered correlation prior over Zellner's g-priors is illustrated with the help of simulation studies and real data
examples in Section 5. Finally, in Section 6 we conclude with a discussion.

2. The adaptive powered correlated prior

Consider again a normal regression model as in (1.1), where X′X represents the correlation matrix. Let X′X = CDC′ be the
spectral decomposition,where the columns ofC are the p orthonormal eigenvectors andD is the diagonalmatrixwith eigenvalues
d1� · · · �dp�0 as the diagonal entries. The powered correlation prior for b conditioned on �2 and X is defined as

b|�2,X ∼ N

(
0,

�2

g
(X′X)�

)
, (2.1)

where (X′X)� =CD�C′, with g>0 and � ∈ R controlling the strength and the shape, respectively, of the prior covariance matrix,
for a given �2>0.

There are several priors which are special cases of the powered correlation prior. For instance, � = −1 produces the Zellner's
g-prior (1.2). By setting � = 0 we have (X′X)0 = I which gives us the ridge regression model of Hoerl and Kennard (1970), under
this model �j are given independent N(0,�2/g) priors. Next we illustrate how � controls the model's response to collinearity
which is the main motivation for using the powered correlation prior.

Let T = XC and h=C′b. The linear model can be written in terms of the principal components as

y ∼ N(Th,�2) with h ∼ N

(
0,

�2

g
D�

)
. (2.2)

The columns of the newdesignmatrix T are the principal components, and so the original prior onb can be viewed as independent
mean zero normal priors on the principal component regression coefficients, with prior variance proportional to the power of the
corresponding eigenvalues, d�

1, . . . ,d
�
p . Principal components with di near zero indicate a presence of a near-linear relationship
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