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Modelling excesses over a high threshold using the Pareto or generalized Pareto distribution
(PD/GPD) is the most popular approach in extreme value statistics. This method typically re-
quires high thresholds in order for the (G)PD to fit well and in such a case applies only to a
small upper fraction of the data. The extension of the (G)PD proposed in this paper is able to
describe the excess distribution for lower thresholds in case of heavy-tailed distributions. This
yields a statistical model that can be fitted to a larger portion of the data. Moreover, estimates
of tail parameters display stability for a larger range of thresholds. Our findings are supported
by asymptotic results, simulations and a case study.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that a distribution is in the max-domain of attraction of an extreme value distribution if and only if the
distribution of excesses over high thresholds is asymptotically generalized Pareto (GP) (Balkema and de Haan, 1974; Pickands,
1975). This result gave rise to the peaks-over-threshold methodology introduced in Davison and Smith (1990); see also Coles
(2001). Themethod consists of two components: modelling of clusters of high-threshold exceedances with a Poisson process and
modelling of excesses associated to the cluster peaks with a GPD. In practice, a way to verify the validity of the model is to check
whether the estimates of the GP shape parameter are stable when the model is fitted to excesses over a range of thresholds. The
question then arises how to proceed if this threshold stability is not visible for a given data set. From a theoretical point of view,
absence of the stability property can be explained by a slow rate of convergence in the Pickands–Balkema–de Haan theorem. In
case of heavy-tailed distributions, the same issue arises when fitting a Pareto distribution (PD) to the relative excesses over high,
positive thresholds.

A possible solution is to build a more flexible model capable of capturing the deviation between the true excess distribution
and the asymptotic model. For heavy-tailed distributions, this deviation can be parametrized using a power series expansion of
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the tail function (Hall, 1982), or more generally via second-order regular variation (Geluk and de Haan, 1987; Bingham et al.,
1987).

The aim of this paper is to propose such an extension, called the extended Pareto or extended generalized Pareto distribution
(EPD/EGPD). A key distinction with other approaches is that although in previous papers the second-order approximation is used
for adjusting the inference of the tail index, inference on the tail itself is still based on the GPD; in contrast, in our approach the
EP(G)D is fitted directly to the high-threshold excesses. Indeed, as we will show later, even if the (G)PD parameters are estimated
in an unbiased way, tail probability estimators may still exhibit asymptotic bias if based upon the (G)PD approximation.

The main advantages of the new model are a reduction of the bias of estimators of tail parameters and a good fit to excesses
over a larger range of thresholds. In an actuarial context, the relevance of usingmore elaboratemodels has already been discussed
for instance in Frigessi et al. (2002) and Cooray and Ananda (2005).

In case of heavy-tailed distributions, it is more convenient to work with relative excesses X/u rather than absolute excesses
X − u. Under the domain of attraction condition the limit distribution of X/u given X>u for u → ∞ is the PD. The EPD and EGPD
presented here are related through the same affine transformation that links these relative and absolute excesses. Building on
the theory of generalized regular variation of second order in de Haan and Stadtmüller (1996), it is also possible to construct an
extension of the GPD with comparable merits applicable to distributions in all max-domains of attraction. However, parameter
estimation in this more general setting is numerically quite involved (Beirlant et al., 2002b): the model contains one additional
parameter and the upper endpoint of the distribution depends in a complicated way on the parameters, which complicates both
theory and computations.

Bias-reduction methods have already been proposed in, amongst others, Feuerverger and Hall (1999), Gomes et al. (2000),
Beirlant et al. (1999, 2002a) and Gomes andMartins (2002, 2004). Thesemethods focus on the distribution of log-spacings of high
order statistics. Moreover, ad hoc construction methods for asymptotically unbiased estimators of the extreme value index were
introduced in Peng (1998), Drees (1996) and Segers (2005). In contrast, next to providing bias-reduced tail index estimators, our
model can be fitted directly to the excesses over a high threshold. The fitted model can then be used to estimate any tail-related
risk measure, such as tail probabilities, tail quantiles (or value-at-risk), etc.

In the same spirit as in this paper, a mixture model with two Pareto components was proposed in Peng and Qi (2004). The
advantage of our model is that it also incorporates the popular GPD. From our experience, this connection can assist in judging
the quality of the GPD fit; see for instance the case study in Example 5.3.

The paper is structured as follows. The next section provides the definition of the E(G)PD, which is shown to yield a more
accurate approximation to the distribution of absolute and relative excesses for a wide class of heavy-tailed distributions.
Estimators of the EPD parameters are derived in Section 3 using the linearized score equations, and their asymptotic normality
is formally stated. In Section 4, we compare the asymptotic distribution and the finite-sample behavior of the estimators of the
extreme value index following from PD, GPD and EPDmodelling. To illustrate how to apply the methodology to the estimation of
general tail-related risk measures, we elaborate in Section 5 on tail probability estimation with theoretical results and a practical
case. The appendices, finally, contain the statement and proof of an auxiliary result on a certain tail empirical process followed
by the proofs of the main theorems.

2. The extended (generalized) Pareto distribution

Definition 2.1. The EPD with parameter vector (�,�, �) in the range �<0< � and �>max(−1, 1/�) is defined by its distribution
function

G�,�,�(y) =
{
1 − {y(1 + � − �y�)}−1/� if y>1,
0 if y�1.

The EGPD is defined by its distribution function

H�,�,�(x) = G�,�,�(1 + x), x ∈ R.

The ordinary PDwith shape parameter �>0 is amember of the EPD family: take �=1/� and �=0 (arbitrary �). The generalized
Pareto distribution (GPD) with positive shape parameter �>0 and scale parameter �>0 is a member of the EGPD family: take
� = −1 and � = �/� − 1. Finally, the distribution of the random variable Y is EPD(�,�, �) if and only if the distribution of Y − 1 is
EGPD(�,�, �).

We will use the E(G)PD to model tails of heavy-tailed distributions that satisfy a certain second-order condition, to be
described next. For a distribution function F, write F = 1 − F. Recall that a positive, measurable function f defined in some
right neighborhood of infinity is regularly varying with index � ∈ R if limu→∞ f (ux)/f (u) = x� for all x ∈ (0,∞); notation
f ∈ R�. The following definition describes a subset of the class of distribution functions F for which F ∈ R−1/�, �>0. Note
that the latter is precisely the class of distributions in the max-domain of attraction of the Fréchet distribution with shape
parameter 1/�.
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