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Consider the nonparametric location-scale regressionmodel Y=m(X)+�(X)�, where the error
� is independent of the covariate X, and m and � are smooth but unknown functions. The pair
(X,Y) is allowed to be subject to selection bias. We construct tests for the hypothesis thatm(·)
belongs to some parametric family of regression functions. The proposed tests compare the
nonparametric maximum likelihood estimator (NPMLE) based on the residuals obtained un-
der the assumed parametric model, with the NPMLE based on the residuals obtained without
using the parametric model assumption. The asymptotic distribution of the test statistics is
obtained. A bootstrap procedure is proposed to approximate the critical values of the tests.
Finally, the finite sample performance of the proposed tests is studied in a simulation study,
and the developed tests are applied on environmental data.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Consider the nonparametric location-scale regression model

Y = m(X) + �(X)�, (1)

where Y is the variable of interest, X is a covariate, the error � is independent of X, E(�) = 0, Var(�) = 1, and m(·) and �2(·) are
smooth but unknown regression and variance curves, respectively.

Suppose that we cannot observe the pair (X,Y) directly, but that our sample comes from (Xw,Yw), a bivariate random vector
whose distribution is given by

dFw(x, y) = w(x, y)
�w

dF(x, y), (2)

where F(x, y) is the bivariate distribution of (X,Y), and �w is the mean value of w(X,Y). The weight function w(X,Y) drives the
relationship between the observed random vector (Xw,Yw), and the unobserved random vector (X,Y). Let (Xw

1 ,Y
w
1 ), . . . , (Xw

n ,Y
w
n )

be n independent replications of (Xw,Yw).
A nice description of practical situations where selection bias is encountered, can be found in Rao (1997). While in Rao (1997)

discrete populations are considered, Mahfoud and Patil (1982) and Patil and Taillie (1989) also deal with the continuous and
multivariate framework (e.g.w(x, y)= y�, w(x, y)=max(x, y), w(x, y)=min(x, y), w(x, y)= x+ y). A more theoretical treatment of
the problem can be found in a series of papers by Vardi (1982). In that paper, the nonparametric maximum likelihood estimator
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(NPMLE) of the distribution function is obtained for the special case where the data are univariate and are subject to length-bias
sampling (i.e. when w(x, y) = y). See also Vardi (1985) and Gill et al. (1988), where the general case of selection biased sampling
is considered for univariate data. They also develop a number of examples (including stratification and length-bias) and give a
detailed treatment of the large sample properties of the NPMLE. The problem of estimating the density from biased data has
been considered by Efromovich (2004), while the paper by Cristóbal and Alcalá (2001) is a valuable source of references on
nonparametric regression function estimation from biased data.

The aim of this paper is twofold. We will first develop the asymptotic properties of the NPMLE of the error distribution, based
on the nonparametric residuals �̂wi = {Yw

i − m̂n(Xw
i )}/�̂n(Xw

i ) (i= 1, . . . ,n), where m̂n(·) and �̂n(·) are appropriate kernel estimators
ofm(·) and �(·), respectively. The proofs of these properties rely heavily on modern empirical process techniques, needed to take
care of the difference I(�̂wi �y)− I(�wi �y) (i= 1, . . . ,n), where �wi = {Yw

i −m(Xw
i )}/�(Xw

i ). See also Akritas and Van Keilegom (2001)
and Van Keilegom and Akritas (1999), where the NPMLE of the error distribution has been studied for completely observed and
right censored observations, respectively. Related estimation problems can be found in Cheng (2004), Efromovich (2005) and
Müller et al. (2004a, b).

Secondly, we will develop appropriate test statistics for the hypothesis

H0:m(·) ∈ M, (3)

when the data are subject to selection bias. Here,M= {m�(·) : � ∈ �} is a class of parametric regression functions, including (but
not restricted to) the class of linear regression functions. The set � is supposed to be a closed subset of Rd. We are interested in
developing omnibus tests, which have power against any alternative hypothesis.

The test statistics proposed in this paper are based on the following idea. When the null hypothesis H0 is true, then the
NPMLE based on the `parametric' residuals �̂w0i = {Yw

i − m�̂(X
w
i )}/�̂n(Xw

i ), where �̂ is an appropriate estimator of � under H0,

will be close to the NPMLE based on the nonparametric residuals �̂wi (i = 1, . . . ,n). It is worth noting that when the data suffer
from selection-bias, not only the sampled data are biased, but also the residuals. The two estimators will be compared through
Kolmogorov–Smirnov and Cramér–von Mises type statistics. Similar test statistics have been considered by Van Keilegom et al.
(2008) and Pardo-Fernández et al. (2007a) for directly observed and right censored observations, respectively. See also Neumeyer
et al. (2006), Pardo-Fernández and Van Keilegom (2006), Einmahl and Van Keilegom (2008) and Pardo-Fernández et al. (2007b)
for other testing procedures under model (1). However, the above papers use local constant smoothing, whereas in this paper we
will use local linear smoothing, because of the well-known advantages in terms of asymptotic bias of estimators based on local
linear instead of local constant smoothing.

The paper is organized as follows. In the next section, we propose an estimator of the error distribution, and study its
asymptotic properties. Section 3 is devoted to the construction and study of test statistics for the hypothesis (3). A bootstrap
approximation is defined in Section 4, which is a useful alternative for the normal approximations obtained in Sections 2
and 3. Some simulation results are summarized in Section 5, while Section 6 shows the results of the analysis of data on the
acid neutralizing capacity of lakes in the Northeastern states of the US. Finally, the proofs of the asymptotic results are given in
Appendix A.

2. Estimation of the error distribution

We start with introducing a number of notations. Let F�(e)= P(��e) and FX(x)= P(X�x). The probability density functions of
F�(e) and FX(x) will be denoted, respectively, by f�(e) and fX(x). The support of X is denoted by RX and is supposed to be a compact
subset of R.

In order to estimate the distribution of �, we first need to estimate m(x) and �(x). For the regression function m(x), following
Cristóbal et al. (2004), we use a local linear estimator, adjusted for the selection bias in the following way:

m̂n(x) =
n∑

i=1

Ww
i (x,hn)Yw

i , (4)

where

Ww
i (x,hn) = ww

i (x,hn)∑n
j=1 w

w
j (x,hn)

,

ww
i (x,hn) = 1

wi

(
sw2 (x,hn)K

(
Xw
i − x

hn

)
− sw1 (x,hn)K

(
Xw
i − x

hn

)
Xw
i − x

hn

)
,

swk (x,hn) =
n∑

i=1

1
wi

K

(
Xw
i − x

hn

)(
Xw
i − x

hn

)k
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