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The extremes of environmental processes are often of interest due to the damage that can
be caused by extreme levels of the processes. These processes are often spatial in nature and
modelling the extremes jointly at many locations can be important. In this paper, an extension
of the Gaussian max-stable process is developed, enabling data from a number of locations
to be modelled under a more flexible framework than in previous applications. The model is
applied to annualmaximum rainfall data from five sites in South-West England. For estimation
we employ a pairwise likelihood within a Bayesian analysis, incorporating informative prior
information.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate extreme value theory provides a way to quantify the joint extreme behaviour of several variables. Many envi-
ronmental processes are spatial in nature and modelling multivariate data can be of great importance. Methods for modelling
such data, based on a multivariate generalisation of the classical approach to univariate extremes, were proposed by Tawn
(1988, 1990) and Smith et al. (1990). Multivariate extensions of the threshold exceedance approach were developed by Coles and
Tawn (1991) and Joe et al. (1991).

Smith (1990) suggests a procedure using the theory of max-stable processes for modelling data which are collected on a grid
of points in space. This approach can be considered as an infinite dimensional extension of multivariate extreme value theory.
The extension has the advantage that it can be used to consider problems concerning aggregation of the process over the whole
region, and interpolation to anywherewithin the region. Another advantage of this approach is thatmodels based on the resulting
family of multivariate extreme value distributions are workable even for a large number of grid points. Other applications of
max-stable processes are given in Coles (1993), Coles and Walshaw(1994) and Coles and Tawn (1996a). Coles (1993) gives a
class of max-stable process models which can utilise all data exceeding pre-defined thresholds. Max-stable processes are used
by Coles and Walshaw(1994) to model the directional dependence of extreme wind speeds, and by Coles and Tawn (1996a) to
develop a model for spatially aggregated rainfall extremes.

Bayesian techniques canbeused to incorporate informationother than thedata into themodel in the formofpriordistributions.
These techniques have the potential to be very useful in improving estimation in extreme value problems, since extreme data are
naturally scarce. Applications of Bayesian techniques to univariate problems have been considered by Coles and Powell (1996)
and Coles and Tawn (1996b), and applications to multivariate problems have been considered by Smith andWalshaw (2003) and
Smith (2005).
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The Gaussian max-stable process, introduced by Smith (1990), suffers from a lack of flexibility, since the Gaussian storm
profile that generates the process has a constant variance matrix across all points in the space of interest. In this paper the model
is extended to a more flexible framework and is applied to annual maximum rainfall data from five locations in South-West
England. For estimation, Smith (1990) suggests a collection of somewhat ad hoc techniques, due to the difficulty arising from
the fact that the joint distribution of the process at more than two sites is unknown. The approach we take here is to estimate
our extended model using a pairwise likelihood within a Bayesian analysis. The pairwise likelihood, which is the product of the
likelihoods for all pairs of sites, comes from a general class of composite likelihoods introduced by Lindsay (1988). Hjort (1993)
was the first to consider using a product of bivariate likelihoods. Hjort (1993) called the approach quasi-likelihood but since
then the name pairwise likelihood has been adopted. In the Bayesian analysis we use informative priors for the marginal site
parameters, based on expert prior information given in Coles and Tawn (1996a) . Prior distributions for parameters relating to
the dependence structure of the process are specified to be non-informative.

2. Extreme value theory

Let Y1,Y2, . . . be an independent and identically distributed (IID) sequence of random variables. Classical univariate extreme
value theory is concerned with the limiting behaviour of Mn = max{Y1, . . . ,Yn} as n → ∞, after a linear normalisation of Mn. The
key result of univariate extreme value theory states that the limiting distribution of Mn is the generalised extreme value (GEV)
distribution:

G(z) = exp
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for {z : 1 + �(z − �)/� >0} and with −∞ <� <∞,� >0 and −∞ <� <∞.
For multivariate extremes, we focus on the limiting distribution, as n → ∞, of the vector
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after a linear normalisation of each component, where Y1,Y2, . . . is an IID sequence of random vectors onRp and Yi=(Yi,1, . . . ,Yi,p).
Each of the p marginal components can be considered separately as sequences of independent, univariate random variables.
The margins of the limit distribution therefore have the form of a particular member of the GEV family in Eq. (2.1). All possible
limit distributions of normalised Mn have the representation
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The measure H characterises the dependence structure of the limiting distribution G, and (�j,�j,�j) give the GEV parameters for
the jth margin Gj(xj) = exp(−1/yj).

3. Max-stable processes

3.1. Theory

A stochastic process {Yt , t ∈ T}, where T is an arbitrary index set, is a max-stable process (de Haan, 1984) if the following
property holds:

if Y(1)t , . . . ,Y(n)t are n independent copies of the process, then there exists constants ant >0 and bnt such that {Y∗
t , t ∈ T} is

identical in law to {Yt , t ∈ T}, where

Y∗
t =

(
max

i=1,. . .,n
Y(i)t − bnt

)/
ant , t ∈ T.



Download	English	Version:

https://daneshyari.com/en/article/1149670

Download	Persian	Version:

https://daneshyari.com/article/1149670

Daneshyari.com

https://daneshyari.com/en/article/1149670
https://daneshyari.com/article/1149670
https://daneshyari.com/

