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In this paper, we consider the problem of estimation of semi-linear regression models. Using
invariance arguments, Bhowmik and King [2007. Maximal invariant likelihood based testing
of semi-linear models. Statist. Papers 48, 357–383] derived the probability density function
of the maximal invariant statistic for the non-linear component of these models. Using this
density function as a likelihood function allows us to estimate these models in a two-step
process. First the non-linear component parameters are estimated by maximising the maxi-
mal invariant likelihood function. Then the non-linear component, with the parameter values
replaced by estimates, is treated as a regressor and ordinary least squares is used to estimate
the remaining parameters. We report the results of a simulation study conducted to compare
the accuracy of this approach with full maximum likelihood and maximum profile-marginal
likelihood estimation.We findmaximising themaximal invariant likelihood function typically
results in less biased and lower variance estimates than those from full maximum likelihood.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A major difficulty with full maximum likelihood (FML) estimation of multiparameter models is that it can result in poor
estimates in some circumstances. There is a problem of potentially biased estimates arising from the joint estimation of multiple
parameters. A good example is the estimate of the variance of the disturbances in the classical linear regression model. In this
case, the maximum likelihood estimator is known to be biased and a simple correction is needed to make it unbiased in small
samples. This is because the regression coefficients are nuisance parameters when it comes to estimating the variance. For further
discussion of the problems of joint estimation of multiple parameters, see Neyman and Scott (1948), Anderson (1970) and Cox
and Hinkley (1974). There is a vast amount of literature on the satisfactory handling of nuisance parameters, see for example,
Fraser (1967), Kalbfleisch and Sprott (1970, 1973), Bellhouse (1978), King (1983), Barndorff-Nielsen (1983), Lehmann (1986), Cox
and Reid (1987), Tunnicliffe Wilson (1989), McCullagh and Tibshirani (1990), Ara and King (1993, 1995), Ara (1995), and Laskar
and King (1998, 2001).

One approach that has received a good deal of attention in the literature is the concept of the marginal likelihood which was
first introduced by Fraser (1967) and further developed by Kalbfleisch and Sprott (1970). The main idea is to transform the data
vector to another random vector, a subvector of which has a likelihood (marginal likelihood) that involves only the parameters of
interest and the remainder of which contains no information about those parameters. There is a lot of evidence in the literature
that the use of marginal likelihoodmethods can producemore accurate estimates and, in particular, less biased estimates. See for
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example Cooper and Thompson (1977), Kitanidis and Vomvoris (1983), Kitanidis (1983, 1987), Hoeksema and Kitanidis (1985),
Kitanidis and Lane (1985), Corduas (1986), Tunnicliffe Wilson (1989), Bellhouse (1991), Shephard (1993), Ara (1995), Ara and
King (1993, 1995), Laskar and King (1998) and Rahman and King (1998).

The use of invariance arguments has been a useful method for dealing with some of the problems caused by nuisance
parameters, particularly for hypothesis testing. The approach involves noting that the testing problem is invariant to a certain
class of transformationson theobserveddatavector and then requiring the chosen test to alsobe invariant to such transformations.
A key device for test construction is the maximal invariant statistic. It is a vector function of the data vector that takes the same
value for data vectors that can be connected by a transformation and different values for those data vectors that cannot be
connected by a transformation. Thus the class of all invariant test statistics corresponds to the class of functions of the maximal
invariant. This allows us to treat the maximal invariant as the observed data when designing a new test. The density function of
the maximal invariant can be treated as a likelihood for this purpose. This function is known as the maximal invariant likelihood
(MIL) function.

Ara (1995) showed that the marginal likelihood function and the likelihood of the maximal invariant statistic are equivalent
in the case of non-spherical disturbances in the linear regression model. In the context of a linear regression model with a
non-linear additive component, Bhowmik and King (2007) derived a MIL function for the non-linear component. The purpose
of this paper is to compare maximum MIL (MMIL) and FML approaches to the estimation of parameters in the non-linear
component. Using the MIL function to estimate these parameters results in a two-step process. First the non-linear component
parameters are estimated by maximising the MIL. Then the non-linear component, with the parameter values replaced by
estimates, is treated as a regressor and ordinary least squares is used to estimate the remaining parameters. Alternatively, the full
likelihood of the complete model can be maximised to obtain the standard maximum likelihood estimates. The MMIL estimator
might be expected to be superior to the full likelihood estimator given the evidence in the literature outlined above. For a
slightly more specific semi-linear model, we also derive a profile likelihood from a marginal joint likelihood which we call a
profile-marginal likelihood (PML) function which can be used in place of the MIL in the first step of the two-step estimation
process.

The plan of this paper is as follows. In Section 2 we derive the likelihood functions (full likelihood, MIL and PML) for the
different non-linear models. Monte Carlo experiments to investigate the performance of different ML estimators in the context
of non-linear parameters are outlined and reported in Section 3. Finally, concluding remarks are made in Section 4.

2. Theory

Consider the following semi-linear model:

y = X1�1 + g(�2) + u, u ∼ N(0,�2In) (2.1)

where y is an n × 1 vector, X1 is an n × q non-stochastic matrix, �1 is a q × 1 parameter vector and g(�2) is a known non-linear
function of the s×1 parameter vector�2. Our interest is in estimating (and testing)�2. This problem is invariant to transformations
of the form

y → �0y + X1� (2.2)

where �0 is a positive scalar and � is a q × 1 vector. Note that w = z/(z′z)1/2 is a maximal invariant statistic where z = Py, P is any
m × n matrix such that PP′ = Im and P′P = M1,m = n − q andM1 = I − X1(X′

1X1)
−1X′

1.
To find the density function of w, Bhowmik and King (2007) first transformed z to m-dimensional polar co-ordinates

(r,�1,�2, . . . ,�m−1) via

z1 = r cos �1

zj = r

⎛
⎝ j−1∏
k=1

sin �k

⎞
⎠ cos �j for 2� j�m − 1

zm = r
m−1∏
k=1

sin �k (2.3)

where 0� r <∞, 0��k��, for k= 1, 2, . . . , (m− 2) and 0��m−1�2�. Observing that z= rw, the problem therefore becomes one
of integrating out r from the joint density function of (r,�1,�2, . . . ,�m−1). This results in the marginal density

f (�1,�2, . . . ,�m−1) = (2�)−m/2
m−2∏
k=1

sin �m−1−k
k exp(b(w,�2))
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