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In this article, we extended the empirical distribution function based test statistic Ik of Skaug
and Tjostheim [1993. Nonparametric test of serial independence based on the empirical dis-
tribution function. Biometrika 80, 591--602] in the time series setting to Dn for spatial lattice
data and derived the asymptotic distribution of the proposed test statistic Dn under the null
hypothesis of spatial independence. The size and power of the proposed test statistic under
conditional autoregressive model (CAR) were simulated. We applied Dn, Moran's I and Geary's
c to the transformed andwell-studied sudden infant death syndrome data fromNorth Carolina
and found that Dn produced a much smaller p-value in testing spatial independence.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Data collected from studies in many fields including public health may have explicit spatial information. Snow (1994) in the
middle of 19th century used spatial patterns to demonstrate the link of cholera and drinking water prior to the knowledge of
etiology of the disease. Along with the rapid advance of computer technology, geography information systems (GIS) have been
getting popular recently in public health studies for descriptive presentations of data with spatial information. Analytic statistical
methods are yet to be implemented in many main stream GIS software packages.

Spatial statistics methods are generally classified into three categories: geostatistics, methods for lattice data and models for
point processes (Cressie, 1993). Geostatisticsmethodswere originally developed formining (Krige, 1951) for data Z(s) observed on
spatial location s, where s varies continuously in the space of interest. For example, Z(s) can be the air pollution level at location s.
The locationmay be any possible point in the continuous space of interest. The variable Z(s) itself can be continuous or discrete. For
lattice data, the area of interest is a discrete space. For example, Z(s) can be themortality rate of county s, where s is from a discrete
space of finite or countably many. Similar to the random variable in the continuous space, Z(s) may be discrete or continuous
(Besag, 1974). Many smoothing techniques were studied in the literature (Kafadar, 1999). Methods for the spatial point processes
assume that the location s itself is generated from a stochastic mechanism. For example, the place where a particular disease is
observed is a realization of a stochastic process (Zimmerman, 1993).

Identifying and quantifying spatial dependence in terms of spatial patterns and autocorrelation are important in the applica-
tions of spatial statistical analysis in public health (Anderson and Titterington, 1997; Kammann and Wand, 2003). In this article,
we proposed and studied a test statistic, Dn, which is based on empirical distribution function for lattice data. In our application,
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Dn provided a much smaller p-value than that of Moran's I and Geary's c. Reviews for spatial analysis in epidemiology and public
health are available in Marshall (1993), Moore and Carpenter (1999).

2. Test statistic and its asymptotic distribution

The proposed test statistic is based on empirical distribution function, which is reviewed briefly first in this section. Let {xi}
be a stochastic process. The empirical distribution function of {xi} is defined as

Fn(x) = 1
n

n∑
i=1

I(xi �x), (1)

where I(xi �x) = 1 if xi �x and I(xi �x) = 0 otherwise. Similarly, for a two dimensional process {xi = (x(1)
i

, x(2)
i

)}, the empirical
distribution function is defined as

Fn(x, y) = 1
n

n∑
i=1

I(x(1)
i

�x)I(x(2)
i

�y). (2)

In time series setting, a lag k empirical distribution function is defined as

Fk(x, y) = 1
n − k

n∑
i=k+1

I(xi−k �x)I(xi �y). (3)

Let

Ik = 1
n − k

n∑
i=k+1

{Fk(xi−1, xi) − Fk(xi−1, ∞)Fk(∞, xi)}2. (4)

Skaug and Tjostheim (1993) proposed

STn = (n − 1)

p∑
k=1

Ik , (5)

for testing serial independence in time series analysis, where p is the number of paired lags used. These types of test statistics
based on empirical distribution functionwere also found to have reasonable power of distinguish chaotic time series from random
series (Lai and Chen, 2002).

Originally, the test statistic based on empirical distribution function for quantifying dependence among multivariate random
variables was introduced by Blum et al. (1961) using the Cramer--vonMises type of distance of distributions (Hoeffding, 1948). In
time series context, it was extended by Skaug and Tjostheim (1993, 1996) to testing serial independence, whichwas then recently
generalized byHong (1998) via variousweighting schemes. Further studies on the empirical distribution function for testing serial
independencewere presented inDelgado (1996) andDelgado andMora (2000). A comprehensive reviewofmeasuring and testing
dependence and independence in time series was provided by Tjostheim (1996).

In this article, we extended the test statistic Ik for time series into the lattice case for testing spatial dependence of spatially
observed data. For this purpose, we define

Dn = 1
|N|

∑
i,j

{F∗(xi, xj) − F∗(xi, ∞)F∗(∞, xj)}2�(i, j), (6)

whereN ={(i, j) : i, j=1,2, . . . , n and sites i and j are in the same neighborhood}, |N| is the number of distinct pairs inN,�(i, j)=1
if sites i and j are in the same neighborhood, �(i, j) = 0 if sites i and j are not in the same neighborhood, further, let �(i, i) = 0,

∑
i,j

denotes the summation of all possible distinct pairs, and

F∗(x, y) = 1
|N|

∑
i,j

I(xi �x)I(xj �y)�(i, j).

A special case of N in time series is that we consider sites i and j are in the same neighborhood if |i − j| =1. In this case, Dn become
I1. Similarly, Dn can be Ik , k = 2, . . . , p.

The asymptotic distribution of Dn is derived in the Appendix. As we can see from the Appendix, Dn is in fact a weight
U-statistic with degenerative kernels. Central limit theorem for U-statistic with some non-degenerative kernels on lattice data
was investigated by Sajjan (2000). It is shown in the Appendix, as n → ∞ (so is |N| → ∞)

|N|Dn →
∞∑
k,l

1/(kl�2)2w2
k,l

in distribution, (7)
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