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We investigate how to combine marginal assessments about the values that random vari-
ables assume separately into a model for the values that they assume jointly, when (i) these
marginal assessments are modelled by means of coherent lower previsions and (ii) we have
the additional assumption that the random variables are forward epistemically irrelevant to
each other. We consider and provide arguments for two possible combinations, namely the
forward irrelevant natural extension and the forward irrelevant product, and we study the
relationships between them. Our treatment also uncovers an interesting connection between
the behavioural theory of coherent lower previsions, and Shafer and Vovk's game-theoretic
approach to probability theory.
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1. Introduction

Inprobability andstatistics, assessmentsof independenceareoftenuseful as theyallowus to reduce thecomplexityof inference
problems. To give an example, and to set the stage for the developments in this paper, we consider two random variables X1 and
X2, taking values in the respective finite setsX1 andX2. Suppose that a subject is uncertain about the values of these variables,
but that he has somemodel expressing his beliefs about them. Then we say that X1 is epistemically irrelevant to X2 for the subject
when he assesses that learning the actual value of X1 would not change his beliefs (or belief model) about the value of X2. We
say that X1 and X2 are epistemically independent when X1 and X2 are epistemically irrelevant to one another; the terminology is
borrowed fromWalley (1991, Chapter 9).

Let us first look at what these general definitions yield when the belief models our subject uses are precise probabilities. If
the subject has a marginal probability mass function p1(x1) for the first variable X1, and a conditional mass function q2(x2|x1)

for the second variable X2 conditional on the first, then we can calculate his joint mass function p(x1, x2) using Bayes's rule:
p(x1, x2)=p1(x1)q2(x2|x1). Nowconsider any real-valued function fonX1×X2.We shall call such functions gambles, because they
can be interpreted as uncertain rewards. We find for the prevision (or expectation, or fair price, we use de Finetti's (1974--1975)
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terminology and notation throughout this paper) of such a gamble f that

P(f) =
∑

(x1,x2)∈X1×X2

f(x1, x2)p1(x1)q2(x2|x1)

=
∑

x1∈X1

p1(x1)
∑

x2∈X2

f(x1, x2)q2(x2|x1) =
∑

x1∈X1

p1(x1)Q2(f(x1, ·)|x1)

= P1(Q2(f |X1)), (1)

where we let Q2(f |X1) be the subject's conditional prevision of f given X1, which is a gamble onX1 whose value in x1,

Q2(f |x1) : =Q2(f(x1, ·)|x1) =
∑

x2∈X2

f(x1, x2)q2(x2|x1)

is the subject's conditional prevision of f given that X1 = x1. We also let P1 be the subject's marginal prevision (operator) for the
first random variable, associated with the marginal mass function p1: P1(g) : =∑

x1∈X1
g(x1)p1(x1) for all gambles g onX1.

When the subject judges X1 to be (epistemically) irrelevant to X2, then we get for all x1 ∈ X1 and x2 ∈ X2 that

q2(x2|x1) = p2(x2), (2)

where p2 is the subject's marginal mass function for the second variable X2 that we can derive from the joint p using p2(x2) :
=∑

x1∈X1
p(x1, x2). The equality (2) expresses that learning that X1 = x1 does not change the subject's probability model for the

value of the second variable. Condition (2) is equivalent to requiring that for all x1 ∈ X and all gambles f onX1 ×X2,

Q2(f(x1, ·)|x1) = P2(f(x1, ·)), (3)

where now P2 is the subject's marginal prevision (operator) for the second variable, associated with the marginal mass function
p2. We can then write for the joint prevision:

P(f) = P1(P2(f)), (4)

where f is any gamble onX1 ×X2, and where we let P2(f) be the gamble onX1 that assumes the value P2(f(x1, ·)) in x1 ∈ X1.
Similarly, when X2 is epistemically irrelevant to X1 for our subject, then

q1(x1|x2) = p1(x1) (5)

for all x1 ∈ X1 and x2 ∈ X2. Here q1(x1|x2) is the subject's mass function for the first variable X1 conditional on the second. This
leads to another expression for the joint prevision:

P(f) = P2(P1(f)). (6)

Expressions (4) and (6) for the joint are equivalent, as generally P1(P2(f)) = P2(P1(f)). This is related to the fact that conditions
(2) and (5) are equivalent: if X1 is epistemically irrelevant to X2 then X2 is epistemically irrelevant to X1, and vice versa. In other
words, for precise probability models, epistemic irrelevance is equivalent to epistemic independence.

Some caution is needed here: this equivalence is only guaranteed if the marginal mass functions are everywhere non-zero.
If some events have zero probability, then it can still be guaranteed provided we slightly change the definition of epistemic
irrelevance, and, for instance, impose q2(x2|x1) = p2(x2) only when p1(x1) >0.

All of this will seem tritely obvious to anyone with a basic knowledge of probability theory, but the point we want to make, is
that the situation changes dramatically when we use belief models that are more general (and arguably more realistic) than the
precise (Bayesian) ones, such as Walley's (1991) imprecise probability models.

On Walley's view, a subject may not generally be disposed to specify a fair price P(f) for any gamble f, but we can always ask
for his lower prevision P(f), which is his supremum acceptable price for buying the uncertain reward f, and his upper prevision P(f),
which is his infimum acceptable price for selling f. We give a fairly detailed introduction to Walley's theory in Section 2.

On this new approach, if X1 is epistemically irrelevant to X2 for our subject, then [compare with Condition (3)]

Q2(f(x1, ·)|x1) = P2(f(x1, ·))
for all gambles f on X1 × X2 and all x1 ∈ X1. Here, similar to what we did before, P2 is the subject's marginal lower prevision
(operator) for X2, andQ2(·|X1) is his lower prevision (operator) for X2 conditional on X1.We shall see in Section 3 that a reasonable

joint model1 for the value that (X1, X2) assumes inX1 ×X2 is then given by [compare with Eqs. (1) and (4)]

P(f) = P1(Q2(f |X1)) = P1(P2(f)) (7)

for all gambles f onX1 ×X2, where P1 is the subject's marginal lower prevision (operator) for X1, and where we also let P2(f) be
the gamble onX1 that assumes the value P2(f(x1, ·)) in any x1 ∈ X1.

1 This is the most conservative joint lower prevision that is coherent with P1 and Q2(·|X1), see also Walley (1991, Section 6.7).
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