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In this paper, we propose a hybrid simulated annealing genetic algorithm (SAGA) for generat-
ing cyclic structured supersaturated designs. The hybrid SAGA combines features such as the
power of the GA and the speed of a local optimizer such as SA, merging the previous meta-
heuristics into a powerful hybrid optimization algorithm. This class of hybrid metaheuristics
enabled us to build supersaturated designs for q = 2, 3, . . . , 14 generators. Comparisons are
made with previous works and it is shown that the hybrid SAGA is a powerful tool for the
construction of E(s2)-optimal supersaturated designs.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Supersaturated design is a factorial design in which the number of experimental runs n is lower than the number of factors
m, that is n�m. For each factor of a two-level supersaturated design there are two possible settings known as levels, which
can be coded as ±1. Any combination of the levels of all factors under consideration is called a treatment combination. Let
X= [c1, c2, . . . , cm] be the design matrix of the experiment in which, each row represents the n treatment combinations and each
column gives the sequence of factor levels. For each factor, both level values are of equal interest and each experimental result
should have equal influence. Thus we consider designs with the equal occurrence property, where all columns consist of n/2
elements equal to 1 and n/2 elements equal to −1, when n is even. The designs with the equal occurrence property are called
balanced designs. The last row of the designs presented in this paper is a row of +1's. If we omit this row, we obtain designs
for odd number of rows, with the number of +1's to be one less than the number of −1's in each column. These designs are
non-balanced designs.
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Industrial experiments are generally very expensive and usually is needed to look at many factors simultaneously. A supersat-
urated design can save considerable costwhen the number of factors is large and a small number of runs is desired or available. The
usefulness of these designs relies upon the realism of effect sparsity (Box andMeyer, 1986), namely, that the number of dominant
active factors is small. Therefore for situations where there really is no prior knowledge of the effects of factors, but a strong belief
in factor sparsity, and where the aim is to find out if there are any dominant factors and to identify them, experimenters should
seriously consider using supersaturated designs. For more details regarding the usage of supersaturated designs see Holcomb
et al. (2007) and Gilmour (2006).

2. Optimality criteria for supersaturated designs

Orthogonality between all pairs of columns of the model matrix, which is formed from the design matrix by appending a
column of 1's as the first column, is required to estimate all factor effects. This condition cannot be satisfied for all pair of columns
in a supersaturated design where m�n. Therefore we try to construct designs as near orthogonal as possible. We present here
the three optimality criteria which we applied for the construction and evaluation of supersaturated designs.

E(s2)-criterion: Let sij be the element in the ith row and jth column of the matrix XTX. Booth and Cox (1962) proposed as a

criterion for comparing designs the minimization of average of s2ij, denoted by ave(s2) or E(s2), where

E(s2) =
∑

1� i<j�m

s2ij

/(
m
2

)
. (1)

The term sij measures the degree of non-orthogonality between two factors i and j. If sij = 0, the factors i and j are orthogonal.
If n is even but not a multiple of 4 (i.e. n ≡ 2(mod4)) then sij cannot be equal to 0. In these cases, factors i and j are called near
orthogonal if sij is close to 0. When sij = ±n then ci = ±cj and ci and cj are completely depended. Designs with any completely
depended factors are usually rejected.

It is known (Nguyen, 1996; Nguyen and Cheng, 2008) that the sum of squares of the elements of XXT and XTX reaches the
minimum if XXT is of the form (m− x)In + xJn, where x= −m/(n− 1) for even n and −m/n for odd n, where In is the n× n identity
matrix and Jn is the n × nmatrix with all its elements equal to 1.

In this case E(s2) can be shown to be

n(m2 + (n − 1)x2 − mn)/(m(m − 1)). (2)

This quantity can be used as a lower bound for E(s2). Nguyen (1996), Tang and Wu (1997) independently showed that

E(s2)�
n2(m − n + 1)
(n − 1)(m − 1)

. (3)

This is equal to (2) for even n. The lower bound (3) is attainable whenm=q(n−1), where q is a positive integer and n ≡ 0(mod4).
It is also attainable when q is even and n ≡ 2(mod4). The relation (2) also provides a new lower bound for E(s2) when n is odd

E(s2)�
m(n2 + n − 1) − n3

n(m − 1)
. (4)

Butler et al. (2001) derived some lower bounds for E(s2) for supersaturated designs with n runs and m = q(n − 1) + k factors
(|k| <n/2, q positive for n ≡ 0(mod4), q even for n ≡ 2(mod4)). Recently, Bulutoglu and Cheng (2004) presented some improved
lower bounds for E(s2), which apply to all cases. These bounds were improved by Ryan and Bulutoglu (2007).We note that during
our metaheuristic search for the E(s2)-optimal supersaturated design with 182 factors in 14 runs, we identified that there does
not exist suitable q in order to use the lower bounds proved by Ryan and Bulutoglu (2007). Thus, we give their theorem with a
slight modification in order to adjust it, also to our case.

Notation: For any x ∈ R, �x�+ = max{0, �x�}, and �x�+ = max{0, �x�} where �·� and �·� are the floor and ceiling functions,
respectively.

Theorem 1. Suppose m is a positive integer such that m>n− 1. Then there is a unique positive integer q (which depends on n and m)
such that −2n + 2�m − q(n − 1) <2n − 2 and (m + q) ≡ 2(mod4). Let g(q) = (m + q)2n − q2n2 − mn2.

(1) If n ≡ 0(mod4), then

E(s2)�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g(q) + 2n2 − 4n
m(m − 1)

when |m − q(n − 1)| <n − 1,

g(q) − 2n2 + 4n + 4n|m − q(n − 1)|
m(m − 1)

when n − 1 < |m − q(n − 1)|� 3
2n − 2,

g(q) + 4n2 − 4n
m(m − 1)

when |m − q(n − 1)| > 3
2n − 2.
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