
Journal of Statistical Planning and Inference 139 (2009) 900 -- 915

Contents lists available at ScienceDirect

Journal of Statistical Planning and Inference

journal homepage: www.e lsev ier .com/ locate / jsp i

On parameter estimation for locally stationary long-memory processes

Jan Beran∗

Department of Mathematics and Statistics, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany

A R T I C L E I N F O A B S T R A C T

Article history:
Received 24 May 2007
Received in revised form
20 December 2007
Accepted 26 May 2008
Available online 4 June 2008

Keywords:
Long memory
Fractional ARIMA process
Local stationarity
Bandwidth selection

We consider parameter estimation for time-dependent locally stationary long-memory pro-
cesses. The asymptotic distribution of an estimator based on the local infinite autoregressive
representation is derived, and asymptotic formulas for the mean squared error of the esti-
mator, and the asymptotically optimal bandwidth are obtained. In spite of long memory, the
optimal bandwidth turns out to be of the order n−1/5 and inversely proportional to the square
of the second derivative of d. In this sense, local estimation of d is comparable to regression
smoothing with iid residuals.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The usefulness of stationary long-memory processes for modelling time series has been demonstrated in the literature by
numerous examples, including applications in hydrology, geophysics, economics, finance, climatology, physics, biology,medicine,
music and telecommunications engineering among others (see e.gMandelbrot, 1977; Beran, 1994, 2003; Lowen and Teich, 2005).
Long memory of a second order stationary process Xt is characterized by slowly decaying nonsummable autocovariances

�(k) = cov(Xt ,Xt+k) ∼ c�|k|2d−1 (|k| → ∞) (1)

where d ∈ (0, 12 ), and a pole of the spectral density at the origin,

fX(�) = 1
2�

∞∑
k=−∞

�(k)e−ik� ∼ cf |�|−2d (|�| → 0) (2)

Here “∼” means that the ratio of both sides tends to one. For some data sets, however, it has been observed that the assumption of
stationarity is too restrictive, even after trends in the mean are removed. In particular, the long-memory parameter d, as well as
other parameters characterizing the spectrum of the process, may change as a function of time. Data examples with time-varying
d can be found, for instance, in geophysics, oceanography, meteorology, economics, telecommunication engineering, medicine
and other areas of statistical applications (see e.g. Beran et al., 1995; Vesilo and Chan, 1996; Whitcher and Jensen, 2000; Lavielle
and Ludena, 2000; Ray and Tsay, 2002; Whitcher et al., 2002; Granger and Hyung, 2004; Falconer and Fernandez, 2007). This
motivates introducing locally stationary processeswith long-range dependence. For locally stationary processeswith short-range
dependence see e.g. Subba Rao (1970), Hallin (1978), Priestley (1981), Dahlhaus (1996, 1997), Dahlhaus and Giraitis (1998), and
Moulines et al. (2005). Jensen and Whitcher (2000) define locally stationary fractional ARIMA (FARIMA) processes (Granger and
Joyeux, 1980; Hosking, 1981), and estimate parameters using wavelets. Alternatively, given a specific linear model such as an
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FARIMA, onemay consider local estimation based on estimated innovations. This is the approach taken here. For related estimates
for stationary long-memoryprocesses, see e.g. Fox andTaqqu (1986), Yajima (1985), Giraitis andSurgailis (1990) andBeran (1995).
Modelling time series by locally stationary long-memory processes is closely related to change point detection in the spectral
domain. For spectral change point detection in the long-memory context, see e.g. Giraitis and Leipus (1990, 1992), Horváth and
Shao (1999), Lavielle and Ludena (2000), Ray and Tsay (2002), and Ben Hariz et al. (2007), also see Kokoszka and Leipus (2003) for
a review. It should also be noted that shifts in the mean can also give rise to long-memory type dependence (see e.g. Granger and
Ding, 1996; Diebold and Inoue, 2001). Distinguishing nonconstant mean from stationary long memory is possible either under
regularity assumptions on a trend function (see e.g. Hall and Hart, 1990; Csörgö andMielniczuk, 1995; Ray and Tsay, 1997; Beran
and Feng 2002a, b) or in the presence of a finite number of change points (see e.g. Horváth and Kokoszka, 1997; Kuan and Hsu,
1998;Wright, 1998; Ray and Tsay, 2002; Sibbertsen, 2004; Berkes et al., 2006). In this paper, we assume themean to be constant.
The methods proposed here may be extended to situations with nonconstant mean by combining themwith suitable algorithms
for nonparametric regression smoothing (Beran and Feng, 2002b) or change point estimation (Horváth and Kokoszka, 1997).

Specifically, we consider a sequence of processes Xt,n having a time-varying infinite autoregressive representation

Xt,n =
∞∑
j=1

bj,nXt−j,n + �t (3)

where �t are iid zero-mean random variables with finite variance �2
� = �2

� (t/n) and bj,n = bj(�(t/n)). Here �2
� (u) and �(u)=

(d(u),�2(u), . . . ,�k(u))
T (u ∈ [0, 1]) are sufficiently smooth functions of rescaled time. Moreover, for fixed u = t/n, the value of

d(u) ∈ (0, 12 ) is assumed to be such that

0 < lim
j→∞

jd+1bj(�(u)) = cb <∞ (4)

and

0 < lim
�→0

2��−2
� �−2d

∣∣∣∣∣∣1 −
∞∑
j=1

bje
−ij�

∣∣∣∣∣∣
2

= c−1
f <∞ (5)

where cb, cf are positive constants. In the case of a fractional ARIMA(p,d, q) process, we have cf = �2
� /(2�) and for z ∈ C, with

|z|�1 and z�1,

1 −
∞∑
j=1

bj(d)z
j = �(z)	−1(z)(1 − z)d (6)

where

�(z) = 1 − �1z − · · · − �pz
p�0 (|z|�1) (7)

	(z) = 1 − 	1z − · · · − 	qz
q�0 (|z|�1) (8)

The time-varying parameters are then �2
� (t/n) = var(�t) and �(t/n) = [d(t/n),�1(t/n), . . . ,�p(t/n),	1(t/n), . . . ,	q(t/n)]

T. Note that,

d(u) >0 means that locally the process has (approximately) a spectral density with a pole at the origin proportional to |�|−2d(u),
and, in the course of time, the rate of divergence of the pole changes slowly.

In this paper, estimation of �(.) based on the autoregressive representation (3) is considered. For Gaussian innovations �t ,
this corresponds to an approximate maximum likelihood estimator. Two questions are addressed: (1) asymptotic distribution
of �̂(u) and (2) the choice of a suitable bandwidth that determines which observations in the neighbourhood of u (or nu on the
original time scale) are used for the local estimate. The paper is organized as follows. The asymptotic distribution of �̂ is derived in
Section 2. Section 3 addresses the issue of bandwidth choice. In particular, an asymptotic expression for the mean squared error
of d̂ is obtained. The asymptotically optimal bandwidth turns out to be proportional to n−1/5 and inversely proportional to {d′′}2.
In spite of long-range dependence, the formula are similar to results in the context of regression smoothing with iid errors. For
the case of short-memory AR(p) processes also see Dahlhaus and Giraitis (1998). Simulations and data examples in Section 3
illustrate the approximate validity of the asymptotic results for finite samples. Moreover, a simple iterative plug-in algorithm for
data driven bandwidth choice is proposed. General comments in Section 4 conclude the paper. Proofs are given in Appendix A.

2. Estimation, asymptotic distribution

Denote by �0(u) the true parameter curve. We consider estimation of �0(u) for a fixed rescaled time point u0 ∈ (0, 1).
Let t0(n)=[nu0], ut,n=t(n)/n, and denote by K:R→R+ a nonnegative kernel function with K(−x)=K(x), K(x)=0 (|x|>1)



Download	English	Version:

https://daneshyari.com/en/article/1149779

Download	Persian	Version:

https://daneshyari.com/article/1149779

Daneshyari.com

https://daneshyari.com/en/article/1149779
https://daneshyari.com/article/1149779
https://daneshyari.com/

