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In quantitative trait linkage studies using experimental crosses, the conventional normal
location-shift model or other parameterizations may be unnecessarily restrictive. We gen-
eralize the mapping problem to a genuine nonparametric setup and provide a robust estima-
tion procedure for the situation where the underlying phenotype distributions are completely
unspecified. Classical Wilcoxon–Mann–Whitney statistics are employed for point and interval
estimation of QTL positions and effects.
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1. Introduction

Genetic mapping of quantitative trait loci (QTL) has fundamental importance in revealing the genetic basis of phenotypic
differences (Belknap et al., 1997; Haston et al., 2002; Wang et al., 2003). In plants and laboratory animals, backcross or F2
intercross populations are widely used for mapping quantitative traits (see Lynch and Walsh, 1998, for details). In QTL mapping,
the basic problems are to test the existence of one or more QTLs, and to estimate the QTL map position and effect if there is
evidence of linkage to a chromosomal region. QTL mapping methodologies, including the single marker t-tests (Sax, 1923) and
likelihood interval mapping (Lander and Botstein, 1989; Haley and Knott, 1992; Kruglyak and Lander, 1995), have traditionally
relied on parametric assumptions. In Kruglyak and Lander (1995), a nonparametric approach has been explored for testing
linkage, but cannot produce QTL confidence intervals or specify effect sizes. Zou et al. (2002) proposed a semiparametric model
that specifies an exponential tilt relationship between phenotype densities for different genotypes at the QTL.

In standardparametric linkage scans, the (profile) likelihood ratio test statistic is calculated for eachposition, and themaximum
likelihood estimate (MLE) used as a point estimate for the QTL position. A difficulty in the use of the MLE in this setting is that it
may exhibit nonstandard asymptotic behavior, depending on the asymptotic regime used (Kong and Wright, 1994). For realistic
sample sizes and marker densities, the consequences are that the MLE of the QTL position might not be efficient and accurate
confidence intervals are not readily available from the profile likelihood in the vicinity of the MLE. However, the reporting
of plausible intervals is important (Flaherty et al., 2003). A number of approximate methods have been described, including
LOD-drop intervals (Lander and Botstein, 1989), whichmay have unreliable coverage (Dupuis and Siegmund, 1999), and formulae
in Darvasi and Soller (1997) for 95% confidence intervals based on their extensive simulations. Other computation-intensive
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approaches include bootstrapping (Visscher et al., 1996) and the method of Mangin et al. (1994), which requires simulation to
obtain an asymptotic distribution of a test statistic.

For backcross population, Kearsey and Hyne (1994), Wu and Li (1994, 1996) proposed a multipoint mapping by modeling the
mean phenotype difference between two genotype groups at a marker as a function of the recombination frequency between
that locus and a putative QTL. Their approach jointly uses the information of every marker on a chromosome. Instead of working
on the profile likelihood across genomic positions, they proposed several least squares methods to estimate the QTL position and
its effect simultaneously. Therefore, both the detection of the QTL and its position (with correct confidence intervals) are done
simultaneously. Liang et al. (2001a, b) proposed a similar multipoint mapping of complex diseases for affected sib pair studies.
The method carries out a parametric inference procedure to locate a susceptibility gene, using generalized estimating equations
(GEE) to model the expected identical by descent (IBD) allele sharing on all genotyped markers at once with the ultimate goal of
locating the susceptible gene more robustly.

The objectives of the current study are to extend the procedure of Kearsey and Hyne (1994) and Wu and Li (1994, 1996) to
relax stringentmodel assumptions on the underlying phenotype distributions. Our proposedmethod differs from the approach of
Kearsey and Hyne (1994) andWu and Li (1994, 1996) in several ways. First, they considered mean phenotype differences at each
marker while we calculate the rank difference of phenotype at each marker, which as shown later, increases mapping efficiency
dramatically. Second, we directly express the covariance matrix analytically in terms of several meaningful parameters, while
Kearsey and Hyne (1994) and Wu and Li (1994, 1996) did not. To simplify the illustration, we describe the method for backcross
populations as done in Kearsey and Hyne (1994) and Wu and Li (1994, 1996).

The paper is organized as described below. Section 2 formulates the estimation procedures. Simulation studies in Section 3
demonstrate the properties of the proposed method and its utility. The discussion section describes extensions and suggestions
for future work.

2. Methodology

Consider a backcross experiment with n genotyped individuals. For the inbred parental lines P1 and P2, we label an allele from
P1 asm and that from P2 asM. The hybrid F1 individuals are completely heterozygous, with genotypeMm at each locus. Crossing
F1 with one of the parental lines (say P2) generates a backcross population in which a subject's genotype has an equal probability
1
2 of being either MM or Mm at every locus. For each individual i, i = 1, . . . ,n where n is the total number of observations,

the observed data consist of a quantitative trait value yi and genotypes at K molecular markers {Mik}Kk=1. Details of the QTL
experiments can be found in Lynch and Walsh (1998).

Suppose there exists a putative QTL at position � on the genome. Further assume that the quantitative traits for individuals
with QTL genotypes Qq and QQ follow distribution functions F and G, respectively. F and Gwill differ, for otherwise locus �would
not be considered a QTL. The quantity

∫
F dG is often used to measure the difference between F and G, and is interpretable as the

probability that a randomvalue fromG exceeds a randomvalue from F. It is also the areaunder the receiver–operator characteristic
curve (AUC) comparing the two distributions, and is invariant to increasing monotone transformations. It is conceptually helpful
to use the rescaled parameter � = 2

∫
F dG − 1. Note that |�| ranges from 0 (when F = G) to 1 (where F and G are completely

nonoverlapping with each other).
For the QTL mapping problem, we note that the QTL position � is unknown and the only genetic information consists of

the marker genotypes, from which the genetic distances of the markers are estimated. If the recombination frequency between
a particular marker locus k ∈ {1, . . . ,K} and the QTL is �k, then given its kth marker genotype Mik, the conditional phenotype
distributions of individual i, will be yi|(Mik=Mm) ∼ F̃k(y)=(1−�k)F(y)+�kG(y) and yi|(Mik=MM) ∼ G̃k(y)=�kF(y)+(1−�k)G(y).
Here �k is a function of �, and by definition of the conditional distributions we have

F̃k − G̃k = (1 − 2�k)(F − G).

This equation drives our ability to detect linkage nonparametrically, as F̃k and G̃k will exhibit their greatest difference for the
marker closest to the QTL, and will show no difference at markers unlinked to the QTL (where �k = 0.5). That is, the phenotypic
differences between the two marker genotype groups will decrease as the marker and QTL distance increases. Specifically, when
marker k is the QTL itself, �k = 0 and F̃k = F, G̃k = G (although the QTL need not be at a marker location). At the other extreme of
no linkage, �k = 1

2 and F̃k = G̃k = 1
2 (F + G).

For testing the existence of a QTL, we have the following two hypotheses:
H0: There exist no QTLs, that is, F = G for all positions on the chromosome vs.
HA: There exists a QTL, that is, F�G for � somewhere on the chromosome.
At marker k, we divide the n individuals into n1,k individuals with genotypeMM and n2,k =n−n1,k individuals with genotype

Mm. Let y(1,1), . . . , y(1,n1,k) and y(2,1), . . . , y(2,n2,k) be the corresponding trait values of those n1,k and n2,k individuals. We propose

the following approach for estimation and testing. Define the Wilcoxon–Mann–Whitney (WMW) statistic at the kth marker as

Uk,n = 1
n1,kn2,k

n1,k∑
i=1

n2,k∑
j=1

�(y(1,i); y(2,j)), k = 1, 2, . . . ,K,
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