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Local linear regression involves fitting a straight line segment over a small region whose mid-
point is the target point x, and the local linear estimate at x is the estimated intercept of
that straight line segment, with an asymptotic bias of order h2 and variance of order (nh)−1

(h is the bandwidth). In this paper, we propose a new estimator, the double-smoothing local
linear estimator, which is constructed by integrally combining all fitted values at x of local
lines in its neighborhood with another round of smoothing. The proposed estimator attempts
to make use of all information obtained from fitting local lines. Without changing the order of
variance, the new estimator can reduce the bias to an order of h4. The proposed estimator has
better performance than local linear regression in situations with considerable bias effects; it
also has less variability and more easily overcomes the sparse data problem than local cubic
regression. At boundary points, the proposed estimator is comparable to local linear regres-
sion. Simulation studies are conducted and an ethanol example is used to compare the new
approach with other competitive methods.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Statistical smoothing techniques are often used to explore unknown trends. Frequently used nonparametric smoothing
techniques include local polynomial regression (Fan and Gijbels, 1996; Wand and Jones, 1995), smoothing splines (Eubank,
1999), and penalized splines (Ruppert et al., 2003). These methods provide flexible modeling tools as there is no assumption on
the functional form for the unknown regression function. Among these methods, local polynomial regression, especially local
linear regression, enjoys excellent numerical as well as theoretical properties. Comparing local linear regression to high-order
local polynomial regression, local linear regression not only is less likely to encounter sparse data problem because its design
matrix is less likely to be singular or nearly singular, but also it is easier to implement corrections such as those based on ridging
and shrinkage.

In this paper, we propose a new estimator which combines fitted values at a target point, say t, of all local lines in its
neighborhood. The new estimator involves two steps of smoothing (weighted averaging), and we name it the double-smoothing
local linear estimator. In the first step of smoothing, each local line is fitted by minimizing a weighted sum of squares as when
fitting local linear regression, and the weight function controls howmuch weight is given to the observations. In the second step
of smoothing, the newestimator is obtained by combining all fitted values at t of the first-step fitted local lines through aweighted
integral. In the second step, another weight function, which does not need to be the same as in the first step, is used to control
the weights given to those fitted values. In contrast to using only an intercept in local linear regression, the proposed estimator
makes use of all information obtained from local lines in its neighborhood. As shown in Theorem 1 in Section 3, the new estimator
has greater bias reduction than local linear regression; the asymptotic bias can be reduced from an order of h2 to an order of h4
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without changing the convergence rate of the asymptotic variance, where h is the bandwidth. Although the new estimator has
the same convergence rate on the asymptotic bias as that for local cubic regression, it has less variability. Furthermore, since the
design matrix is only used in the first step of smoothing, similar to local linear regression, the new estimator has the advantage
of overcoming the sparse data problem. We note that the estimator proposed by Choi and Hall (1998) is a special case of the new
estimator; we also note that when the same weight function for both steps of smoothing is applied, the estimator obtained by
double-smoothing yields exactly the same estimated values for the mean function at the observed values of X as the `projected'
response obtained by Huang and Chen (2008).

After a brief review of local linear regression and some related work in Section 2, in Section 3 we introduce the double-
smoothing local linear estimator and develop its main properties inside the support of the predictor X. Since boundary effect
is an important issue in smoothing techniques, we present a thorough discussion on the boundary estimation for the proposed
estimator in Section 4. To illustrate the finite sample performance of the proposed estimator and compare the new estimator
with local linear regression, local cubic regression and Choi and Hall's estimator, simulation studies are conducted in Section 5
and a real data example is presented in Section 6. Finally the paper concludes with a discussion in Section 7.

2. Local linear regression

Suppose we have independent observations (X1,Y1), (X2,Y2), . . . , (Xn,Yn) from the model:

Y = m(X) + �(X)�, (1)

where X and � are independent and � has mean 0 and variance 1. At a target point x, we want to estimate the regres-
sion mean m(x) = E(Y|X = x). Local linear regression assumes that in a neighborhood of x, m(Xi) can be approximated by
m(Xi) ≈ m(x) + m′(x)(Xi − x). Then the local linear regression estimator (LL) is obtained by minimizing a weighted sum of
squares:

n∑
i=1

{Yi − (�0 + �1(Xi − x))}2K
(
Xi − x

h

)
, (2)

where K(·) is a symmetric density function, i.e., K�0,
∫
K = 1, and K(−x) = K(x). The density function K(·) generally gives

more weight to observations closer to x. The minimizing pair of (�0,�1), depending on the point x as well as on the data
{(Xi,Yi), i= 1, 2, . . . ,n}, is denoted as (�̂0(x), �̂1(x)). Local linear regression estimator, denoted by m̃(x), uses only �̂0(x) to estimate
the value ofm(·) at point x, i.e., m̃(x) = �̂0(x).

If the weight function K(·) is supported on a compact interval, say [−1, 1], then it is obvious that only observations in the
region [x − h, x + h] will be used to estimate m̃(x). Thus the bandwidth h is a smoothing parameter which controls the size of the
neighborhood of local smoothing. If [x − h, x + h] is included in the support of the design density, i.e., if the point x is an interior
point, the asymptotic bias and variance for local linear regression (Fan and Gijbels, 1996) are given by

bias{m̃(x)|X1, . . . ,Xn} = h2
m′′(x)

2
�2 + op(h2),

var{m̃(x)|X1, . . . ,Xn} = (nh)−1 �0
f (x)

�2(x) + op{(nh)−1}, (3)

where f (x) is the density of the covariate X, called the “design density”, �j = ∫
ujK(u) du and �j = ∫

ujK2(u) du, j = 0, 1, 2, . . . .
If [x − h, x + h] is not entirely contained in the support of the design density, then (3) is no longer true. Such point x is called

a boundary point. Most smoothing techniques have worse behavior at boundary points, and hence special handling is in general
required. This is known as the boundary effect problem. There is an extensive literature on how to correct boundary effect; see,
for example, Cline and Hart (1991), Cheng et al. (1997) and Cowling and Hall (1996). Although, as discussed in Fan and Gijbels
(1996), local linear regression can adapt automatically to estimation at the boundary points, and hence no boundarymodification
is needed, the expression of the asymptotic bias and variance of m̃(x) in the boundary region is different.

Assume that the design density has a bounded support [0, 1], and K(·) is supported on [−1, 1]. A left boundary point has
the form x = ch with 0�c <1, whereas a right boundary point is of the form x = 1 − ch. At a left boundary point x = ch
(the right boundary point would be similar), the asymptotic bias and variance for local linear regression (Fan and Gijbels, 1996)
are given by

bias{m̃(x)|X1, . . . ,Xn} = h2
m′′(x)

2
B0(c) + op(h2),

var{m̃(x)|X1, . . . ,Xn} = (nh)−1 V0(c)
f (x)

�2(x) + op{(nh)−1}, (4)

where B0(c) = (�2
2,c − �1,c�3,c)/(�0,c�2,c − �2

1,c) and V0(c) = ∫ 1
−c(�2,c − u�2

1,c)K
2(u) du/(�2,c�0,c − �2

1,c)
2 with �j,c = ∫ 1

−c u
jK(u) du.
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