
Journal of Statistical Planning and Inference 138 (2008) 1998–2016
www.elsevier.com/locate/jspi

Pseudo-full likelihood estimation for prospective survival analysis
with a general semiparametric shared frailty model: Asymptotic

theory

David M. Zuckera,∗, Malka Gorfineb, Li Hsuc

aDepartment of Statistics, Hebrew University, Mt. Scopus, Jerusalem 91905, Israel
bFaculty of Industrial Engineering and Management, Technion, Technion City, Haifa 32000, Israel

cDivision of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle WA 98109-1024, USA

Received 9 August 2006; received in revised form 8 August 2007; accepted 15 August 2007
Available online 12 October 2007

Abstract

In this work we present a simple estimation procedure for a general frailty model for analysis of prospective correlated failure
times. Earlier work showed this method to perform well in a simulation study. Here we provide rigorous large-sample theory
for the proposed estimators of both the regression coefficient vector and the dependence parameter, including consistent variance
estimators.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many epidemiological studies involve failure times that are clustered into groups, such as families or schools.
Unobserved characteristics shared by members of the same cluster (e.g. genetic information or unmeasured shared
environmental exposures) could influence time to the studied event. Frailty models express within-cluster dependence
through a shared unobservable random effect. Estimation in the frailty model has received much attention under various
frailty distributions, including gamma (Gill, 1985, 1989; Nielsen et al., 1992; Klein, 1992, among others), positive stable
(Hougaard, 1986; Fine et al., 2003), inverse Gaussian, compound Poisson (Henderson and Oman, 1999) and log-normal
(McGilchrist, 1993; Ripatti and Palmgren, 2000; Vaida and Xu, 2000, among others). Hougaard (2000) provides a
comprehensive review of the properties of the various frailty distributions. In a frailty model, the parameters of interest
typically are the regression coefficients, the cumulative baseline hazard function, and the dependence parameters in the
random effect distribution.

Since the frailties are latent covariates, the expectation–maximization (EM) algorithm is a natural estimation tool,
with the latent covariates estimated in the E-step and the likelihood maximized in the M-step after substituting in the
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estimated latent quantities. Gill (1985), Nielsen et al. (1992), and Klein (1992) discussed EM-based maximum likelihood
estimation for the semiparametric gamma frailty model. One problem with the EM algorithm is that variance estimates
for the estimated parameters are not readily available (Louis, 1982; Gill, 1989; Nielsen et al., 1992; Andersen et al.,
1997). It has been suggested (Gill, 1989; Nielsen et al., 1992) that a nonparametric information calculation could yield
consistent variance estimators. Parner (1998), building on Murphy (1994, 1995), proved the consistency and asymptotic
normality of the maximum likelihood estimator in the gamma frailty model. Parner also presented a consistent estimator
of the limiting covariance matrix of the estimator, based on inverting a discrete observed information matrix. He noted
that since the dimension of the observed information matrix grows with the number of observed survival times, inverting
the matrix is practically infeasible for a large data set with many distinct failure times. He therefore suggested an alternate
approach to estimating the covariance, based on solving a discrete version of a second order Sturm–Liouville equation,
along the lines of Bickel (1985). This covariance estimator requires less computational effort, but still is not so simple
to implement.

We (Gorfine et al., 2006) developed a new method that can handle any parametric frailty distribution with finite
moments. Nonconjugate frailty distributions can be handled by a simple univariate numerical integration over the
frailty distribution. Our new method possesses a number of desirable properties: a noniterative procedure for estimating
the cumulative hazard function; consistency and asymptotic normality of the parameter estimates; a direct consistent
covariance estimator; and easy computation and implementation. The method was found to perform well in a simulation
study and the results are very similar to those of the EM-based method. Indeed, on a data set-by-data set basis, the
correlation between our estimator and the EM estimator was found to be 95% for the covariate regression parameter
and 98–99% for the within-cluster dependence parameter. The purpose of the current paper is to present in detail the
theoretical justification for the method.

Our technical approach resembles that of Bagdonavicius and Nikulin (1999) and Dabrowska (2006a, b). These works,
however, dealt with a univariate data context, whereas we deal with a clustered data context. Dabrowska works with
a transformation model with unknown transformation. She discusses the univariate gamma frailty model, but assumes
that the shape parameter of the frailty distribution is known. Indeed, as discussed in Dabrowska (2006a, pp. 147–148),
identifiability problems arise in the univariate gamma frailty model with unknown shape parameter when an unknown
transformation is involved. In fact, even when the transformation is known, if there are no covariate effects on the hazard
rate (i.e. in the model (1), the regression parameter vector � is equal to zero), the shape parameter cannot be identified
from univariate data (Lancaster and Nickell, 1980). In our setting, there is no unknown transformation, and we have
clustered data. In this case, the shape parameter is identifiable irrespective of whether � is zero or nonzero. In our
work, we are specifically interested in estimating the shape parameter, which expresses the within-cluster dependence.
In genetic research and other contexts, this cluster dependence parameter is itself of significant scientific interest,
because it provides insight into the impact of genetic and environmental factors on the disease incidence. Dabrowska
(2006b) discusses a one-step method for converting a consistent estimator into a semiparametric efficient estimator.
In principle, this approach could be applied to our estimator as well. In our simulations, however, we found that our
estimator was comparable in efficiency to the full nonparametric MLE. Thus, although our estimator is not theoretically
semiparametric efficient, in practical terms it closely approaches semiparametric efficiency.

The plan of the paper is as follows. Section 2 presents the estimation procedure. Section 3 presents the consistency
and asymptotic normality results, along with the covariance estimator for the parameter estimates. Section 4 presents a
simulation study. Section 5 presents the technical conditions required for our theoretical results and the proofs of these
results. The proofs are patterned after Zucker (2005), but with a number of significant differences, which are described
at the beginning of Section 5.

2. The proposed approach

Consider n families, with family i containing mi members, i = 1, . . . , n. Following Parner (1998, p.187), we regard
mi as a random variable over {1, . . . , m} for some m, and build up the remainder of the model conditional on mi .
Let T 0

ij and Cij denote the failure and censoring times, respectively, for individual ij . The observed follow-up time

is Tij = min(T 0
ij , Cij ), and the failure indicator is �ij = I (T 0

ij �Cij ). On each individual, we observe a p-vector of
covariates Zij . In addition, we associate with family i an unobservable family-level covariate Wi , the “frailty”, which
induces dependence among family members. The conditional hazard function for individual ij , given the family frailty
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