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Abstract

We consider the construction of designs for test-control field experiments, with particular attention being paid to the effects of spatial
correlation between adjoining plots. In contrast to previous approaches, in which very specific correlation structures were modelled,
we explicitly allow a degree of uncertainty on the part of the experimenter. While fitting a particular correlation structure—and
variance structure and regression response—the experimenter is thought to be seeking protection against other possible structures in
full neighbourhoods of these particular choices. Robustness, in a minimax sense, is obtained through a modification of the kriging
estimation procedure, and through the assignment of treatments to field plots.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the construction of designs for test-control field experiments, with particular attention being paid to
the effects of spatial correlation between adjoining plots. These effects are by now well documented—see for example
Taplin (1999), Wu and Dutilleul (1999) and Legendre et al. (2004). Martin (1986) initiated a systematic study of
designs which account for spatial correlation; see also Petraitis (2001) and Fagroud and Van Meirvenne (2002) for
ad hoc recommendations. In contrast to these approaches (but see also Martin et al., 1993), in which very specific
correlation structures were modelled, we explicitly allow a degree of uncertainty on the part of the experimenter. While
fitting a particular correlation structure—and variance structure and regression response—the experimenter is thought
to be seeking protection against other possible structures in full neighbourhoods of these choices. Robustness, in a
minimax sense detailed below, is obtained through a modification of the kriging estimation procedure, and through the
assignment of treatments to field plots.

To motivate the discussion, consider a rectangular layout of plots, with r rows and c columns. There are t crop
varieties to be planted. One, denoted variety 1, is a control, or “check” variety. The n= rc locations of plots are denoted
by t1, . . . , tn. A task of the experimenter is to allocate crop varieties to plots, subject perhaps to constraints on the
frequencies {ni}ti=1 with which each variety will appear; for instance we may require that they be equal, or that the
frequency n1 have special prominence.
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Fig. 1. Correlation structures for plot O: (a) NN(1); (b) MA(1).

In this paper treatments are not limited to crop varieties; they can be various nutrients, or combinations of crop
varieties and nutrients, etc. One objective of the experiment is to model an observed random variable Y, e.g. crop yield,
in terms of variety, and perhaps in terms of other design variables (added nutrients, water, etc.) as well. Denote by xq×1
the vector of such design variables. Each treatment determines a value of x. We might also allow for a deterministic
spatial trend. The experimenter intends to fit a linear regression model, with regressors v(x): p1 × 1, w(t): p2 × 1 and
response

E[Y |x, t] ≈ vT(x)�(1) + wT(t)�(2). (1)

As indicated by (1) the fitted response is acknowledged to be only an approximation, in which case ensuing estimates
and predictions will be biased. In some cases, depending on the richness of the space over which x varies, some
protection against this bias can be obtained through a judicious choice of the design variables.

Even in the simple case that q = 1 and x is merely the indicator of the variety, the allocation of varieties to plots
should take into account the spatial correlations between the plots. Failure to do so may of course result in inefficient
estimates. But the specification of an appropriate model for these correlations can be very difficult, and one typically
posits a simple and intuitively pleasing model in the hopes that it will at least be adequate, if not particularly accurate.
Robustness of design is again called for, as is robustness of the estimation procedure.

We anticipate that the experimenter will work with a particular correlation structure, but seek protection against a full
neighbourhood of such structures. Two particular structures, appealing for their simplicity, are the first order nearest
neighbour (NN(1)) model (Kiefer and Wynn, 1981) and the first order moving average (MA(1)) model (Haining, 1978).
These are illustrated in Fig. 1 (a) and (b), respectively. Under the NN(1) structure the plot O has positive correlation
� only with its first order neighbours, and � ∈ (0, 1

4 ). Under the MA(1) structure O has positive correlation with 12
neighbours, described by a parameter � ∈ (0, 1

4 ) with � = 2�/(1 + 4�2).
A further call for robustness comes from the need to assume a variance structure on the measurement errors. One

would generally fit a homoscedastic model, while wishing for some protection against heteroscedasticity. Again we
will deal with this by seeking robustness against a class of such structures.

Specifically and more generally, we have a fixed set T = {t1, . . . , tn} of locations of field plots. At location ti one
sets the levels of an independent variable x, and observes

Yi = E[Y |xi , ti] + �(ti ) + �(ti ), i = 1, . . . , n.

Here:

(i) {�(t)|t ∈ T} is a set of uncorrelated zero-mean random errors, with variance matrix F = diag(f (t1), . . . , f (tn)).
We allow f to vary over a neighbourhood of a variance function f0:

F� =
{
f (·)

∣∣∣∣max
t∈T

∣∣∣∣ f (t) − f0(t)|��, f (t)�0

}
.

(ii) {�(t)|t ∈ T} is a zero-mean, spatially correlated stochastic process (uncorrelated with {�(t)|t ∈ T}) with
covariance function g(ti , tj ) = cov[�(ti ), �(tj )] and covariance matrix Gn×n = (g(ti , tj ))ni,j=1. We allow g to
vary over

G� = {g(·, ·)|0�G�G(0) + �K},
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